Skip header and navigation

1 records – page 1 of 1.

Experimental Investigations of Post-Tensioned Timber Frames with Advanced Seismic Damping Systems

https://research.thinkwood.com/en/permalink/catalogue464
Year of Publication
2012
Topic
Mechanical Properties
Seismic
Material
Glulam (Glue-Laminated Timber)
LVL (Laminated Veneer Lumber)
Application
Wood Building Systems
Author
Smith, Tobias
Carradine, David
Di Cesare, Antonio
Carlo Ponzo, Felice
Pampanin, Stefano
Buchanan, Andrew
Nigro, Domenico
Organization
Structures Congress
Publisher
American Society of Civil Engineers
Year of Publication
2012
Country of Publication
United States
Format
Conference Paper
Material
Glulam (Glue-Laminated Timber)
LVL (Laminated Veneer Lumber)
Application
Wood Building Systems
Topic
Mechanical Properties
Seismic
Keywords
Damping
Energy Dissipation
Full Scale
Post-Tensioning
Language
English
Conference
Structures Congress 2012
Research Status
Complete
Notes
March 29-31, 2012, Chicago, Illinois, United States
Summary
This paper describes initial experimental testing to investigate feasible sources of passive damping for the seismic design of post-tensioned glue laminated timber structures. These innovative high performance structural systems extend precast concrete PRESSS technology to engineered wood structures, combining the use of post-tensioning bars or cables with large post-tensioned timber members. The combination of these two elements provides elastic recentering to the structure while the addition of damping using a specialised energy dissipation system gives the desirable `flag shaped' hysteretic response under lateral loading. Testing has been performed on a full scale beam-column joint at the University of Basilicata in Italy in a collaborative project with the University of Canterbury, New Zealand. The experimental testing uses engineered wood products, extending the use of laminated veneer lumber (LVL) structures tested in New Zealand to testing of glue laminated timber (glulam) structures in Italy. Current testing is aimed at further improvement of the system through additional energy dissipation systems.
Online Access
Payment Required
Resource Link
Less detail