Skip header and navigation

3 records – page 1 of 1.

Post-Tensioned Mass Timber Systems

https://research.thinkwood.com/en/permalink/catalogue1256
Year of Publication
2017
Topic
Design and Systems
Seismic
Application
Frames
Shear Walls
Author
Iqbal, Asif
Popovski, Marjan
Organization
Structures Congress
Publisher
American Society of Civil Engineers
Year of Publication
2017
Country of Publication
United States
Format
Conference Paper
Application
Frames
Shear Walls
Topic
Design and Systems
Seismic
Keywords
North America
New Zealand
Post-Tensioning Cables
Post-Tensioned
Multi-Story
Lateral Load Resisting Systems
High Seismic Regions
Language
English
Conference
Structures Congress 2017
Research Status
Complete
Notes
April 6–8, 2017, Denver, Colorado
Summary
A new type of mass timber structural system has been developed in New Zealand over the last decade. Timber members made of engineered wood products are used in combination with post-tensioning cables to produce highly efficient structural components suitable for multi-story moment resisting frames or shear wall-based lateral load resisting systems. Both systems are particularly useful in structures designed in high seismic regions. The post-tensioning also ensures self-centering of the components and the structural systems after a seismic event. In addition to the post-tensioning, the systems can use energy dissipating devices within the connections that further enhance the ductility of the systems and make them good candidates for low damage structural applications. Extensive experimental and numerical studies have been conducted to determine the performance of these systems and design procedures have been developed for practical applications. In an effort to bring this system closer to the North American designers, this paper contains a summary of the evolution of the concept and the most important research projects and findings to date. In addition, a number of applications within and outside New Zealand are reviewed to demonstrate the applicability of the concept. Finally, potential and recent initiatives for adoption of the technology in North America are discussed.
Online Access
Payment Required
Resource Link
Less detail

Tall Cross-Laminated Timber Building: Design and Performance Session WW300 Experimental and Modeling Studies on Wood Frame Buildings

https://research.thinkwood.com/en/permalink/catalogue618
Year of Publication
2014
Topic
Design and Systems
Seismic
Material
CLT (Cross-Laminated Timber)
Application
Walls
Wood Building Systems
Author
Dolan, Daniel
Bordry, Vincent
Pei, Shiling
van de Lindt, John
Organization
Structures Congress
Publisher
American Society of Civil Engineers
Year of Publication
2014
Country of Publication
United States
Format
Conference Paper
Material
CLT (Cross-Laminated Timber)
Application
Walls
Wood Building Systems
Topic
Design and Systems
Seismic
Keywords
Damping
Multi-Story
Ductility
Cost
Fire Resistance
Language
English
Conference
Structures Congress 2014
Research Status
Complete
Notes
April 3-5, 2014, Boston, Massachusetts, United States
Summary
Cross-laminated timber (CLT) is widely perceived as the most promising option for building high-rise wood structures due to its structural robustness and good fire resistance. While gravity load design of a tall CLT building is relatively easy to address because all CLT walls can be utilized as bearing walls, design for significant lateral loads (earthquake and wind) can be challenging due to the lack of ductility in current CLT construction methods that utilize wall panels with low aspect ratios (height to length). Keeping the wall panels at high aspect ratios can provide a more ductile response, but it will inevitably increase the material and labor costs associated with the structure. In this study, a solution to this dilemma is proposed by introducing damping and elastic restoring devices in a multi-story CLT building to achieve ductile response, while keeping the integrity of low aspect ratio walls to reduce the cost of construction and improve fire resistance. The design methodology for incorporating the response modification devices is proposed and the performance of the as-designed structure under seismic is evaluated.
Online Access
Payment Required
Resource Link
Less detail

Timber-Concrete Composites Using Flat-Plate Engineered Wood Products

https://research.thinkwood.com/en/permalink/catalogue616
Year of Publication
2015
Topic
Design and Systems
Connections
Material
CLT (Cross-Laminated Timber)
LSL (Laminated Strand Lumber)
LVL (Laminated Veneer Lumber)
Timber-Concrete Composite
Application
Floors
Author
Gerber, Adam
Tannert, Thomas
Organization
Structures Congress
Publisher
American Society of Civil Engineers
Year of Publication
2015
Country of Publication
United States
Format
Conference Paper
Material
CLT (Cross-Laminated Timber)
LSL (Laminated Strand Lumber)
LVL (Laminated Veneer Lumber)
Timber-Concrete Composite
Application
Floors
Topic
Design and Systems
Connections
Keywords
Concrete Topping
Mid-Scale
Push-Out Tests
Language
English
Conference
Structures Congress 2015
Research Status
Complete
Notes
April 23–25, 2015, Portland, Oregon, USA
Summary
Timber-Concrete Composite (TCC) systems have been employed as an efficient solution in medium span structural applications; their use remains largely confined to European countries. TCC systems are generally comprised of a timber and concrete element with a shear connection between. A large number of precedents for T-beam configurations exist; however, the growing availability of flat plate engineered wood products (EWPs) in North America has offered designers greater versatility in terms of floor plans and architectural expression in modern timber and hybrid structures. The opportunity exists to enhance the strength, stiffness, fire, and vibration performance of floors using these products by introducing a concrete topping, connected to the timber to form a composite. A research program at the University of British Columbia Vancouver investigates the performance of five different connector types (a post-installed screw system, cast-in screws, glued-in steel mesh, adhesive bonded, and mechanical interlocking) in three different EWPs (Cross-Laminated-Timber, Laminated-Veneer-Lumber, and Laminated-Strand-Lumber). Over 200 mid-scale push-out tests were performed in the first stage of experimental work to evaluate the connector performance and to optimize the design of subsequent vibration and bending testing of full-scale specimens, including specimens subjected to long-term loading.
Online Access
Payment Required
Resource Link
Less detail