Skip header and navigation

2 records – page 1 of 1.

Displacement Design Procedure for Cross Laminated Timber (CLT) Rocking Walls with Sacrificial Dampers

https://research.thinkwood.com/en/permalink/catalogue395
Year of Publication
2015
Topic
Design and Systems
Seismic
Material
CLT (Cross-Laminated Timber)
Application
Walls
Author
Gu, Mengzhe
Pang, Weichiang
Schiff, Scott
Organization
Structures Congress
Publisher
American Society of Civil Engineers
Year of Publication
2015
Format
Conference Paper
Material
CLT (Cross-Laminated Timber)
Application
Walls
Topic
Design and Systems
Seismic
Keywords
Energy Dissipation
Ductile Behavior
U-Shaped Flexural Plates
Self-centering Mechanism
Conference
Structures Congress 2015
Research Status
Complete
Notes
April 23–25, 2015, Portland, Oregon, USA
Summary
This paper presents the preliminary design of a rocking Cross-laminated Timber (CLT) wall using a displacement-based design procedure. The CLT wall was designed to meet three performance expectations: immediate occupancy (IO), life safety (LS), and collapse prevention (CP). Each performance expectation is defined in terms of an inter-story drift limit with a predefined non-exceedance probability at a given hazard level. U-shape flexural plates were used to connect the vertical joint between the CLT panels to obtain a ductile behavior and adequate energy dissipation during seismic motion. A design method for ensuring self-centering mechanism is also presented.
Online Access
Payment Required
Resource Link
Less detail

Structural Design, Approval, and Monitoring of a UBC Tall Wood Building

https://research.thinkwood.com/en/permalink/catalogue1252
Year of Publication
2017
Topic
Serviceability
Mechanical Properties
Design and Systems
Material
CLT (Cross-Laminated Timber)
Glulam (Glue-Laminated Timber)
Application
Hybrid Building Systems
Author
Tannert, Thomas
Moudgil, Ermanu
Organization
Structures Congress
Publisher
American Society of Civil Engineers
Year of Publication
2017
Format
Conference Paper
Material
CLT (Cross-Laminated Timber)
Glulam (Glue-Laminated Timber)
Application
Hybrid Building Systems
Topic
Serviceability
Mechanical Properties
Design and Systems
Keywords
Vertical Shrinkage
Horizontal Building Vibration
Structural Performance
Concrete Core
Brock Commons
Conference
Structures Congress 2017
Research Status
Complete
Notes
April 6–8, 2017, Denver, Colorado
Summary
In this paper, we discuss the structural design of one of the tallest timber-based hybrid buildings in the world: the 18 storey, 53 meter tall student residence on the campus of the University of British Columbia in Vancouver. The building is of hybrid construction: 17 storeys of mass wood construction on top of one storey of concrete construction. Two concrete cores containing vertical circulation provide the required lateral resistance. The timber system is comprised of cross-laminated timber panels, which are point supported on glued-laminated timber columns and steel connections between levels. In addition to providing more than 400 beds for students, the building will serve as an academic site to monitor and study its structural performance, specifically horizontal building vibration and vertical shrinkage considerations. We present the challenges relating to the approval process of the building and discuss building code compliance issues.
Online Access
Payment Required
Resource Link
Less detail