In this paper, we discuss the structural design of one of the tallest timber-based hybrid buildings in the world: the 18 storey, 53 meter tall student residence on the campus of the University of British Columbia in Vancouver. The building is of hybrid construction: 17 storeys of mass wood construction on top of one storey of concrete construction. Two concrete cores containing vertical circulation provide the required lateral resistance. The timber system is comprised of cross-laminated timber panels, which are point supported on glued-laminated timber columns and steel connections between levels. In addition to providing more than 400 beds for students, the building will serve as an academic site to monitor and study its structural performance, specifically horizontal building vibration and vertical shrinkage considerations. We present the challenges relating to the approval process of the building and discuss building code compliance issues.
April 3-5, 2014, Boston, Massachusetts, United States
Summary
The second glued-laminated structure built in the United States was constructed at the USDA Forest Products Laboratory (FPL) in 1934 to demonstrate the performance of wooden arch buildings. After 75 years of use the structure was decommissioned in 2010. Shortly after construction, researchers structurally evaluated the gluedlaminated arch structure for uniform loading on the center arch. This structural system evaluation was added to the existing laboratory work on glued-laminated arches to develop the foundation on which the current glued-laminated arch design criteria is based. After 75 years of service and decommisioning, recovered arches were tested in the laboratory to evaluate the loss of structural performance. Loss of structural performance was evaluated by comparing original and current deformation. Based on a preliminary visual and structural assessment, the degradation of structural performance was minimal in the arches, except for two arch that were affected by the building fire.