Skip header and navigation

2 records – page 1 of 1.

Fire Safety and Tall Timber Buildings—What’s Next?

https://research.thinkwood.com/en/permalink/catalogue1253
Year of Publication
2017
Topic
Design and Systems
Market and Adoption
Material
Glulam (Glue-Laminated Timber)
Application
Wood Building Systems
Author
Barber, David
Organization
Structures Congress
Publisher
American Society of Civil Engineers
Year of Publication
2017
Format
Conference Paper
Material
Glulam (Glue-Laminated Timber)
Application
Wood Building Systems
Topic
Design and Systems
Market and Adoption
Keywords
Fire Safety
Exposed Load Bearing Timber
Concealed Connections
Conference
Structures Congress 2017
Research Status
Complete
Notes
April 6–8, 2017, Denver, Colorado
Summary
Model building codes in the United States limit timber construction to six stories, due to concerns over fire safety and structural performance. With new timber technologies, tall timber buildings are now being planned for construction. The process for building approval for a building constructed above the code height limits with a timber load-bearing structure, is by an alternative engineering means. Engineering solutions are required to be developed to document and prove equivalent performance to a code compliant structure, where approval is based on substantive consultation and documentation. Architects in the US are also pushing the boundaries and requesting load-bearing timber be exposed and not fully encapsulated in fire rated gypsum drywall. This provides an opportunity for the application of recent fire research on exposed timber to be applied, and existing methods of analyzing the impact of fire on engineered timber structures to be developed further. This paper provides an overview of the performance based fire safety engineering required for building approval and also describes the engineering methodologies that can be utilized to address specific exposed load-bearing timber issues; concealed connections for glulam beams; and the methodology to address areas of exposed timber.
Online Access
Payment Required
Resource Link
Less detail

Timber Tower Research: Concrete Jointed Timber Frame

https://research.thinkwood.com/en/permalink/catalogue440
Year of Publication
2014
Topic
Design and Systems
Environmental Impact
Application
Hybrid Building Systems
Author
Baker, William
Horos, David
Johnson, Benton
Schultz, Joshua
Organization
Structures Congress
Year of Publication
2014
Format
Conference Paper
Application
Hybrid Building Systems
Topic
Design and Systems
Environmental Impact
Keywords
Carbon Dioxide Emissions
Tall Wood
Concrete Jointed Timber Frame
Conference
Structures Congress 2014
Research Status
Complete
Notes
April 3-5, 2014, Boston, Massachusetts, United States
Summary
The goal of this research was to develop a structural system for tall buildings using mass-timber as the main structural material that reduces the carbon dioxide emissions associated with the structure. The structural system research was applied to a prototypical building based on an existing concrete benchmark for comparison. This paper discusses key design issues associated with tall mass-timber buildings along with potential solutions. It is believed that the system proposed in the research and discussed in the paper could mitigate many of these design issues. The main structural mass-timber elements are connected by steel reinforcing through cast-in-place concrete at the connection joints. This system plays to the strengths of both materials and allows the designer to apply sound tall building engineering fundamentals. The result is believed to be an efficient structure that could compete with reinforced concrete and structural steel while reducing the associated carbon emissions by 60 to 75%.
Online Access
Payment Required
Resource Link
Less detail