Skip header and navigation

3 records – page 1 of 1.

Seismic Design and Analysis of a 20-Storey Demonstration Wood Building

https://research.thinkwood.com/en/permalink/catalogue667
Year of Publication
2015
Topic
Design and Systems
Seismic
Application
Hybrid Building Systems
Author
Chen, Zhiyong
Chui, Ying Hei
Popovski, Marjan
Organization
Structures Congress
Publisher
American Society of Civil Engineers
Year of Publication
2015
Country of Publication
United States
Format
Conference Paper
Application
Hybrid Building Systems
Topic
Design and Systems
Seismic
Keywords
Nonlinear time history analysis
Demonstration Building
Finite Element Model
Wood-Steel
Language
English
Conference
Structures Congress 2015
Research Status
Complete
Notes
April 23–25, 2015, Portland, Oregon, USA
Summary
This paper presents the seismic design and analysis of a 20-storey demonstration wood building, which was conducted as a part of the NEWBuildS tall wood building design project. A hybrid lateral load resisting system was chosen for the building. The system consisted of shear walls and a shear core, both made of structural composite lumber, connected with dowel-type connections and heavy-duty HSK (wood-steel-composite) system. The core and the shear walls were linked with horizontal steel beams at each floor. The wood-based panel-to-panel interface was designed to be the main energy dissipating mechanism of the system. A detailed finite element model of this building was developed and non-linear time history analyses were performed using 10 earthquake motions. The results showed that the seismic response of the 20-storey demonstration building met the various design criteria and the design details are appropriate.
Online Access
Payment Required
Resource Link
Less detail

Structural Design, Approval, and Monitoring of a UBC Tall Wood Building

https://research.thinkwood.com/en/permalink/catalogue1252
Year of Publication
2017
Topic
Serviceability
Mechanical Properties
Design and Systems
Material
CLT (Cross-Laminated Timber)
Glulam (Glue-Laminated Timber)
Application
Hybrid Building Systems
Author
Tannert, Thomas
Moudgil, Ermanu
Organization
Structures Congress
Publisher
American Society of Civil Engineers
Year of Publication
2017
Country of Publication
United States
Format
Conference Paper
Material
CLT (Cross-Laminated Timber)
Glulam (Glue-Laminated Timber)
Application
Hybrid Building Systems
Topic
Serviceability
Mechanical Properties
Design and Systems
Keywords
Vertical Shrinkage
Horizontal Building Vibration
Structural Performance
Concrete Core
Brock Commons
Language
English
Conference
Structures Congress 2017
Research Status
Complete
Notes
April 6–8, 2017, Denver, Colorado
Summary
In this paper, we discuss the structural design of one of the tallest timber-based hybrid buildings in the world: the 18 storey, 53 meter tall student residence on the campus of the University of British Columbia in Vancouver. The building is of hybrid construction: 17 storeys of mass wood construction on top of one storey of concrete construction. Two concrete cores containing vertical circulation provide the required lateral resistance. The timber system is comprised of cross-laminated timber panels, which are point supported on glued-laminated timber columns and steel connections between levels. In addition to providing more than 400 beds for students, the building will serve as an academic site to monitor and study its structural performance, specifically horizontal building vibration and vertical shrinkage considerations. We present the challenges relating to the approval process of the building and discuss building code compliance issues.
Online Access
Payment Required
Resource Link
Less detail

Timber Tower Research: Concrete Jointed Timber Frame

https://research.thinkwood.com/en/permalink/catalogue440
Year of Publication
2014
Topic
Design and Systems
Environmental Impact
Application
Hybrid Building Systems
Author
Baker, William
Horos, David
Johnson, Benton
Schultz, Joshua
Organization
Structures Congress
Year of Publication
2014
Country of Publication
United States
Format
Conference Paper
Application
Hybrid Building Systems
Topic
Design and Systems
Environmental Impact
Keywords
Carbon Dioxide Emissions
Tall Wood
Concrete Jointed Timber Frame
Language
English
Conference
Structures Congress 2014
Research Status
Complete
Notes
April 3-5, 2014, Boston, Massachusetts, United States
Summary
The goal of this research was to develop a structural system for tall buildings using mass-timber as the main structural material that reduces the carbon dioxide emissions associated with the structure. The structural system research was applied to a prototypical building based on an existing concrete benchmark for comparison. This paper discusses key design issues associated with tall mass-timber buildings along with potential solutions. It is believed that the system proposed in the research and discussed in the paper could mitigate many of these design issues. The main structural mass-timber elements are connected by steel reinforcing through cast-in-place concrete at the connection joints. This system plays to the strengths of both materials and allows the designer to apply sound tall building engineering fundamentals. The result is believed to be an efficient structure that could compete with reinforced concrete and structural steel while reducing the associated carbon emissions by 60 to 75%.
Online Access
Payment Required
Resource Link
Less detail