Skip header and navigation

5 records – page 1 of 1.

Development of Adhesive Free Engineered Wood Products - Towards Adhesive Free Timber Buildings

https://research.thinkwood.com/en/permalink/catalogue2029
Year of Publication
2018
Topic
Connections
Design and Systems
Environmental Impact
Mechanical Properties
Material
CLT (Cross-Laminated Timber)
Glulam (Glue-Laminated Timber)
Author
Guan, Zhongwei
Sotayo, Adeayo
Oudjene, Marc
el Houjeyri, Imane
Harte, Annette
Mehra, Sameer
Haller, Peer
Namari, Siavash
Makradi, Ahmed
Belouettar, Salim
Deneufbourg, Franscois
Year of Publication
2018
Format
Conference Paper
Material
CLT (Cross-Laminated Timber)
Glulam (Glue-Laminated Timber)
Topic
Connections
Design and Systems
Environmental Impact
Mechanical Properties
Keywords
Adhesives
Manufacturing
Compressed Wood
Four Point Bending Test
Numerical Models
Conference
World Conference on Timber Engineering
Research Status
Complete
Summary
Over 5 million m 3 of engineered wood products (EWPs) are produced in the EU annually and the market is rising. However, EWPs have a high degree of petrochemical use in their manufacturing. In addition, throughout the life span of these EWP products from manufacture to disposal, they emit formaldehyde and other volatile organic compounds (VOCs), which makes recycling very difficult. In this paper, preliminary experimental work on Adhesive Free Engineered Wood Products (AFEWPs) is presented, which covers (1) manufacture of compressed wood (CW) dowels, (2) fabrication of adhesive free laminated beams and connections, (3) structural testing of AFEWPs. Also, the finite element models are being developed to assist designing of AFEWPs in terms of size of compressed wood dowel and dowel patterns in order to maximise their stiffness and load carrying capacities.
Online Access
Free
Resource Link
Less detail

Evaluation of the Structural Behaviour of Beam-Beam Connection Systems Using Compressed Wood Dowels and Plates

https://research.thinkwood.com/en/permalink/catalogue2050
Year of Publication
2018
Topic
Connections
Material
Glulam (Glue-Laminated Timber)
Application
Beams
Author
Mehra, Sameer
O’Ceallaigh, Conan
Hamid-Lakzaeian, Fatemeh
Guan, Zhongwei
Sotayo, Adeayo
Harte, Annette
Organization
National University of Ireland Galway
University of Liverpool
Year of Publication
2018
Format
Conference Paper
Material
Glulam (Glue-Laminated Timber)
Application
Beams
Topic
Connections
Keywords
Beam-to-Beam
Compressed Wood Dowels
Compressed Wood Plates
Four Point Bending Test
Load Carrying Capacity
Failure Modes
Moment Resistance
Rotational Stiffness
Conference
World Conference on Timber Engineering
Research Status
Complete
Summary
To support the transition to a bio-based society, it is preferable to substitute metallic fasteners and adhesives in timber construction with an eco-friendly alternative. Recent studies have identified compressed wood dowels and plates as a possible substitute for metallic fasteners in contemporary and mainstream applications. In this study, a spliced beam-beam connection system using compressed wood dowels and slotted-in compressed wood plates was examined under four-point bending. The study has considered specimens with compressed wood dowels of 10 mm diameter and compressed wood plates of 10 mm thickness. The load carrying capacity of connections using compressed wood dowels and plates were compared to connections utilising steel dowels and plates of equivalent capacity. Typical failure modes, moment resistance and rotational stiffness of both connection systems are evaluated on the basis of the experimental results. Tests have demonstrated similar failure modes when comparing steel-timber and compressed wood-timber connection systems. The mean failure load for the compressed wood-timber connection system is only 20.3% less than that achieved for the steel-timber connection system. The mean rotational stiffness of the compressed wood-timber connection system is 18.55% less than that achieved for the steel-timber connection system. These preliminary results demonstrate the potential for the use of compressed wood elements in the manufacture of timber connections.
Online Access
Free
Resource Link
Less detail

Experimental characterisation of the moment-rotation behaviour of beam-beam connections using compressed wood connectors

https://research.thinkwood.com/en/permalink/catalogue3131
Year of Publication
2021
Topic
Connections
Author
Mehra, Sameer
O'Ceallaigh, Conan
Sotayo, Adeayo
Guan, Zhongwei
Harte, Annette M.
Organization
National University of Ireland Galway
University of Liverpool
Publisher
Elsevier
Year of Publication
2021
Format
Journal Article
Topic
Connections
Keywords
Compressed Wood Connectors
Dowel-Type Connections
Eurocode 5
Moment Rotation Behaviour
Beam-beam Connections
Research Status
Complete
Series
Engineering Structures
Summary
The widespread use of energy-intensive metallic connectors and synthetic adhesives in modern timber construction has negative implications for the end-of-life disposal or re-use of the structural timber components. Therefore, it is favourable to substitute metallic connectors and synthetic adhesives with bio-based alternatives such as wood-based connectors. Recent studies have shown that densified or compressed wood (CW) with superior mechanical properties could be suitable for the manufacture of wood-based connectors in the form of CW dowels and CW plates. This study experimentally examines the moment-rotation behaviour of semi-rigid type timber-CW beam-beam connections under pure bending. The study also assesses the suitability of current design rules to predict the moment capacity of timber-CW connections. The comparative study has shown that the moment capacity of the timber-CW connection can be conservatively predicted from the characteristic load-carrying capacity of the connections calculated using the EC 5 strength equations.
Online Access
Free
Resource Link
Less detail

Experimental investigation of the moment-rotation behaviour of beam-column connections produced using compressed wood connectors

https://research.thinkwood.com/en/permalink/catalogue3104
Year of Publication
2022
Topic
Mechanical Properties
Connections
Material
DLT (Dowel Laminated Timber)
Author
Mehra, Sameer
O'Ceallaigh, Conan
Sotayo, Adeayo
Guan, Zhongwei
Harte M. Annette
Organization
National University of Ireland
University of Liverpool
Publisher
Elsevier
Year of Publication
2022
Format
Journal Article
Material
DLT (Dowel Laminated Timber)
Topic
Mechanical Properties
Connections
Keywords
Compressed Wood
Moment-Rotation Behaviour
Dowel Type Connections
Research Status
Complete
Series
Construction and Building Materials
Summary
The use of timber in construction in medium–high rise construction has increased in recent years largely due to the significant innovation in engineered wood products and connection technology coupled with a desire to utilise more environmentally sustainable construction materials. While engineered wood products offer a low-carbon solution to the construction industry, the widespread use of adhesive and metallic fasteners often limits the recyclability of the structural components at the end of life of the structure and it may be beneficial to reduce this where possible. To establish the possibility of an all-wood connection solution, this preliminary study examines a series of beam-column connections designs to evaluate the relative performance of the different designs, which are connected with modified or compressed wood (CW) connectors. The connection designs are formed between glued-laminated beam and column members in the first instance and later examined when connecting dowel-laminated timber (DLT) members. The results show that significant moment capacity and rotational stiffness can be achieved for connections solely connected using CW fasteners. Furthermore, the all-wood solution utilising CW fasteners to connect DLT members has also demonstrated significant moment capacity and rotational stiffness capacity without the use of adhesive and metallic components.
Online Access
Free
Resource Link
Less detail

Review of State of the Art of Dowel Laminated Timber Members and Densified Wood Materials as Sustainable Engineered Wood Products for Construction and Building Applications

https://research.thinkwood.com/en/permalink/catalogue2385
Year of Publication
2020
Topic
Design and Systems
Mechanical Properties
Material
DLT (Dowel Laminated Timber)
Application
Wood Building Systems