Skip header and navigation

10 records – page 1 of 1.

CLT Buildings Laterally Braced with Core and Perimeter Walls

https://research.thinkwood.com/en/permalink/catalogue1663
Year of Publication
2016
Topic
Connections
Seismic
Material
CLT (Cross-Laminated Timber)
Application
Shear Walls
Author
Polastri, Andrea
Loss, Cristiano
Pozza, Luca
Smith, Ian
Year of Publication
2016
Country of Publication
Austria
Format
Conference Paper
Material
CLT (Cross-Laminated Timber)
Application
Shear Walls
Topic
Connections
Seismic
Keywords
Multi-Storey
Numerical Models
X-RAD
Language
English
Conference
World Conference on Timber Engineering
Research Status
Complete
Notes
August 22-25, 2016, Vienna, Austria p. 3706-3715
Summary
In this work the behaviour of hybrid multi-storey buildings braced with Cross-Laminated-Timber (CLT) cores and shear-walls is studied based on numerical analyses. Two procedures for calibrating numerical models are adopted and compared to test data and application of provisions in current design codes. The paper presents calibration of parameters characterising connections used to interconnect adjacent CLT panels and building cores, and attach shear-walls to foundations or floors that act as eleveted diaphragms. Different case studies are analysed comparing the structural responses of buildings assembled with „standard" fastening systems (e.g. hold-downs and angle-brackets), or using a special X-RAD connection system. The aim is to characterize behaviours of connections in ways that reflect how they perform as parts of completed multi-storey superstructure systems, rather than when isolated from such systems or their substructures. Results from various analyses are presented in terms of principal elastic periods, base shear forces, and uplift forces in buildings. Discussion addresses key issues associated with engineering analysis and design of buildings having around five or more storeys.
Online Access
Free
Resource Link
Less detail

Connections for CLT Diaphragms in Steel-Frame Buildings

https://research.thinkwood.com/en/permalink/catalogue1594
Year of Publication
2014
Topic
Connections
Mechanical Properties
Material
CLT (Cross-Laminated Timber)
Application
Hybrid Building Systems
Author
Joyce, Tom
Smith, Ian
Organization
NEWBuildS
Year of Publication
2014
Country of Publication
Canada
Format
Report
Material
CLT (Cross-Laminated Timber)
Application
Hybrid Building Systems
Topic
Connections
Mechanical Properties
Keywords
Steel
Connections
Self-Tapping Screws
Fabrication
Strength
Stiffness
Ductility
Language
English
Research Status
Complete
Summary
The high performance in-plane of cross laminated timber (CLT) panels has created a potential for the use of CLT members act as diaphragms in steel structures. The behaviour of this diaphragm system depends strongly on the connections involved in linking the panels together and to the steel members. A study of the connections at both locations was made using experimental testing of two connection designs for the panel-to-panel case, and the development of a staggered lag screw connection for the panel-to-steel beam case. The results showed good performance for the double spline and fully-threaded inclined screws panel-to-panel connections. The lag screw connection showed high strength, stiffness, and ductility. The CSA Standard O86-09 was found to best predict the strength of both types of connections. Characteristic design stiffness values were presented for the stiffness at low levels of displacement and the initial, elastic stiffness.
Online Access
Free
Resource Link
Less detail

Dynamic Characteristics of Glulam Beam and Deck-Element Floors

https://research.thinkwood.com/en/permalink/catalogue1717
Year of Publication
2016
Topic
Acoustics and Vibration
Serviceability
Material
Glulam (Glue-Laminated Timber)
Application
Floors
Author
Mehdi Ebadi, Mohammad
Doudak, Ghasan
Smith, Ian
Year of Publication
2016
Country of Publication
Austria
Format
Conference Paper
Material
Glulam (Glue-Laminated Timber)
Application
Floors
Topic
Acoustics and Vibration
Serviceability
Keywords
Vibration Response
One-Way
Finite Element Model
Experimental
Language
English
Conference
World Conference on Timber Engineering
Research Status
Complete
Notes
August 22-25, 2016, Vienna, Austria p. 4547-4554
Summary
Low amplitude cyclic vertical motions of flat floors that humans find unacceptable are commonly caused by impacts resulting from their own activities or those of other people. It is therefore a goal of engineering design to identify and avoid construction methods prone to creation of motions that make floors unserviceable for an intended type of building occupancy. In some instances use of engineered wood products as construction materials results in floors having unacceptable vibration performances. Usually this is because floors exhibit modal frequencies and mode shapes that cause human perceptory organs to resonate or accelerate. This paper addresses vibration response characteristics of one-way spanning floors constructed using widely spaced glulam beams and transverse glulam deck elements. The vehicles for gaining understanding of such systems are experiments and finite element models.
Online Access
Free
Resource Link
Less detail

Finite Element Models of Effects of Moisture on Bolt Connection Properties of Glulam

https://research.thinkwood.com/en/permalink/catalogue539
Year of Publication
2014
Topic
Connections
Mechanical Properties
Moisture
Material
Glulam (Glue-Laminated Timber)
Author
Kiwelu, Henry
Smith, Ian
Asiz, Andi
Year of Publication
2014
Country of Publication
Canada
Format
Conference Paper
Material
Glulam (Glue-Laminated Timber)
Topic
Connections
Mechanical Properties
Moisture
Keywords
Finite Element Model
Moisture Content
Stiffness
Load Bearing Capacity
Language
English
Conference
World Conference on Timber Engineering
Research Status
Complete
Notes
August 10-14, 2014, Quebec City, Canada
Summary
Connections are critical parts of timber structures, transmitting static and dynamic forces between structural elements. Extensive experiments were conducted and detailed Finite Element (FE) models were developed. The experimental results showed that the stiffness and load-bearing capacity of the joints is reduced by post-fabrication wetting and is increased by post-fabrication drying. It was clear from those test results that changes in mechanical properties were greater than could be explained by effects moisture content changes have on material properties. Three-dimensional (3-D) continuum FE models for connection loaded parallel to grain were successfully developed based on analysis of connections having a single ½ inch (12.7 mm) or ¾ inch (19.1 mm) diameter bolt. The model included the nonlinearity of material and contact analysis between wood and steel and revealed that the connection capacity can be well predicted by using FE techniques.
Online Access
Free
Resource Link
Less detail

Numerical Analyses of High- and Medium-Rise CLT Buildings Braced with Cores and Additional Shear Walls

https://research.thinkwood.com/en/permalink/catalogue1890
Year of Publication
2016
Topic
Design and Systems
Mechanical Properties
Material
CLT (Cross-Laminated Timber)
Application
Walls
Wood Building Systems
Author
Polastri, Andrea
Pozza, Luca
Loss, Christiano
Smith, Ian
Editor
Cruz, Paulo J.S.
Publisher
CRC Press
Year of Publication
2016
Country of Publication
United Kingdom
Format
Conference Paper
Material
CLT (Cross-Laminated Timber)
Application
Walls
Wood Building Systems
Topic
Design and Systems
Mechanical Properties
Keywords
Panels
Multi-Storey
Analytical modeling
Language
English
Conference
International Conference on Structures and Architecture
Research Status
Complete
Series
Structures and Architecture: Beyond their Limits
Notes
Proceedings of the Third International Conference on Structures and Architecture (ICSA2016), July 27-29, 2016, Guimaraes, Portugal
p. 128-136
ISBN
978-1-138-02651-3
Summary
In the last twenty years CLT (cross-laminated timber) panels have become quite widely employed to build multi-storey buildings often characterized by the presence of many internal and perimeter shear walls. Building superstructures in which beam-and-column frameworks resits effects of gravity loads and core substructures and exterior CLT shear walls resist effects of lateral forces have been found structurally effective. Advantages of such structural arrangements can include creation of large interior spaces, high structural efficiency, and material economies. Here the behaviour of multi-storey buildings braced with CLT cores and additional CLT shear walls is examined based on numerical analyses. Two procedures for calibrating numerical analysis models are proposed and discussed here. The first approach is to use information from Eurocode 5, and the second approach is to use specifically applicable experimental data obrained through laboratory studies. Technically different ways of connecting CLT panels in order to obtain suitably stiff horizontal diaphragms are also presented.
Online Access
Free
Resource Link
Less detail

Numerical Study of Alternative Seismic-Resisting Systems for CLT Buildings

https://research.thinkwood.com/en/permalink/catalogue2176
Year of Publication
2018
Topic
Connections
Design and Systems
Material
CLT (Cross-Laminated Timber)
Application
Walls
Shear Walls

Structural Characterization of Multi-Storey Buildings with CLT Cores

https://research.thinkwood.com/en/permalink/catalogue496
Year of Publication
2014
Topic
Seismic
Material
CLT (Cross-Laminated Timber)
Application
Wood Building Systems
Shear Walls
Author
Polastri, Andrea
Pozza, Luca
Trutalli, Davide
Scotta, Roberto
Smith, Ian
Year of Publication
2014
Country of Publication
Canada
Format
Conference Paper
Material
CLT (Cross-Laminated Timber)
Application
Wood Building Systems
Shear Walls
Topic
Seismic
Keywords
Multi-Storey
Numerical model
Building Cores
Language
English
Conference
World Conference on Timber Engineering
Research Status
Complete
Notes
August 10-14, 2014, Quebec City, Canada
Summary
The behaviour of multi-storey buildings braced with Cross-Laminated-Timber (CLT) cores and additional shear walls is examined based on numerical analyses of various 3-dimensional configurations. Two ways of calibrating numerical model are proposed according to codes and experimental test data respectively, including calibration of parameters that characterise connections between CLT panels in building cores and shear walls. Results of analyses of entire buildings are presented in terms of principal elastic periods, and base shear and up-lift forces. Discussion addresses primary issues associated with behaviour of such systems and modelling them.
Online Access
Free
Resource Link
Less detail

Structural Characterization of Multi-Storey CLT Buildings Braced with Cores and Additional Shear Walls

https://research.thinkwood.com/en/permalink/catalogue203
Year of Publication
2015
Topic
Seismic
Connections
Material
CLT (Cross-Laminated Timber)
Application
Wood Building Systems
Shear Walls
Author
Polastri, Andrea
Pozza, Luca
Loss, Christiano
Smith, Ian
Organization
International Network on Timber Engineering Research (INTER)
Year of Publication
2015
Country of Publication
Croatia
Format
Conference Paper
Material
CLT (Cross-Laminated Timber)
Application
Wood Building Systems
Shear Walls
Topic
Seismic
Connections
Keywords
Codes
Eurocode
Mid-Rise
Language
English
Conference
INTER 2015
Research Status
Complete
Notes
August 24-27, 2015, Šibenik, Croatia
Summary
This paper related to elimination of the deficiencies. The behaviour of multi-storey buildings braced with cores and CLT shear walls is examined based on numerical analyses. Two procedure for calibrating numerical analysis models are proposed using information from Eurocode 5 [13] and specific experimental test data. This includes calibration of parameters that characterise connections between CLT panels and other CLT panels, building cores and shear walls. The aim is to make the characterizations of behaviours of connections that reflect how those connections perform within complete multi-storey superstructures, rather than in isolation or as parts of substructures. The earthquake action for cases studied was according to Eurocode 8 [14] and using the appropriate behaviour factor (q factor). Results of analyses of entire buildings are presented in terms of principal elastic periods, base shear and up-lift forces. Discussion addresses key issues associated with behaviour of such systems and modelling them. Obtained results permit creation of appropriate guidelines and rules for design of the aforementioned types of hybrid buildings incorporating CLT wall panels.
Online Access
Free
Resource Link
Less detail

Vibration Response Modelling of Cross Laminated Timber Slabs

https://research.thinkwood.com/en/permalink/catalogue1621
Year of Publication
2016
Topic
Acoustics and Vibration
Material
CLT (Cross-Laminated Timber)
Application
Floors
Author
Ussher, Ebenezer
Weckendorf, Jan
Smith, Ian
Year of Publication
2016
Country of Publication
Austria
Format
Conference Paper
Material
CLT (Cross-Laminated Timber)
Application
Floors
Topic
Acoustics and Vibration
Keywords
Finite Element
Dynamic Response
Language
English
Conference
World Conference on Timber Engineering
Research Status
Complete
Notes
August 22-25, 2016, Vienna, Austria p. 2494-2501
Summary
Innovations in timber engineering have led to new slab systems built from engineered wood products like cross-laminated-timber (CLT). High stiffness of CLT can enable attainment of better vibration performances than is possible with traditional shallow profile-long span floors constructed from timber and other materials. However, realization of this depends on engineers being able to accurately predict effects various construction variables have on dynamic responses of CLT slabs. Past physical experiments have provided insights into those effects. However, testing is a very expensive and time consuming means of acquiring necessary knowledge. Discussion here addresses finite element (FE) simulations as a cost effective method allowing engineers to understand and assess relationships between design variables and dynamic responses of CLT floor slabs. Presented modelling techniques are verified by demonstrating close correlation between numerical predictions and experimental modal response characteristics of CLT slabs.
Online Access
Free
Resource Link
Less detail

Vibration Serviceability Design Analysis of Cross-Laminated Timber Floor Systems

https://research.thinkwood.com/en/permalink/catalogue40
Year of Publication
2014
Topic
Acoustics and Vibration
Serviceability
Material
CLT (Cross-Laminated Timber)
Application
Floors
Author
Ussher, Ebenezer
Sadeghi, Masoud
Weckendorf, Jan
Smith, Ian
Year of Publication
2014
Country of Publication
Canada
Format
Conference Paper
Material
CLT (Cross-Laminated Timber)
Application
Floors
Topic
Acoustics and Vibration
Serviceability
Keywords
Finite Element Model
Floors
Vibrations
Language
English
Conference
World Conference on Timber Engineering
Research Status
Complete
Notes
August 10-14, 2014, Quebec City, Canada
Summary
Vibration serviceability of various types of timber floor systems has claimed much attention during past decades. Yet the definition of robustly reliable engineering design approaches has remained elusive, except in well-defined situations. Successful de...
Online Access
Free
Resource Link
Less detail

10 records – page 1 of 1.