A major problem in light-weight timber floors is their insufficient performance coping with impact noise in low frequencies. There are no prefabricated solutions available in Australia and New Zealand. To rectify this and enable the implementation of light-weight timber floors, a structural floor was designed and built in laminated veneer lumber (LVL). The floor was evaluated in a laboratory setting based on its behaviour and then modified with suspended ceilings and different floor toppings. Twenty-nine different floor compositions were tested. The bare floor could not reach the minimum requirement set by the Building Code of Australia (BCA) but with additional layers, a sufficient result of R'w+Ctr 53 dB and L’nT,w + CI 50 dB was reached. Doubling of the concrete mass added a marginal improvement. With concrete toppings and suspended ceiling it is possible to reach the goal in airborne and impact sound insulation. The best result was achieved by combining of additional mass and different construction layers.
A Comparative Life Cycle Assessment Approach of Two Innovative Long Span Timber floors with its Reinforced Concrete Equivalent in an Australian Context
A long term laboratory investigation on two six-meter-span timber composite beams was started from March 2012 at the University of Technology Sydney. These timber composites were made of laminated veneer lumber (LVL). The web and the flanges of the composite timber section were connected using screw-gluing technique. The specimens have been under sustained loads of (2.1kPa) and the environmental conditions was cyclically alternated between normal and very humid conditions whilst the temperature remained quasi constant (22 °C) –typical cycle duration was six to eight weeks. With regard to EC 5, the environmental conditions can be classified as service class 3 where the relative humidity of the air exceeds 85% and the moisture content of the timber samples reaches 20%. During the test, the mid-span deflection, moisture content of the timber beams and relative humidity of the air were continuously monitored. The paper presents the results and observations of the long-term test to-date and the test is continuing.
Australasian Conference on the Mechanics of Structures and Materials
Research Status
Complete
Notes
December 11-14, 2012, Sydney, Australia
Summary
Timber-concrete composite (TCC) beams are made up two materials, i.e. wood and concrete, which exhibit different behaviours under long-term loading. The time-dependent behaviour of TCC beam is not only affected by the long-term load but also driven by the variation of the environmental conditions such as temperature and relative humidity. In particular, the maximum deflection under service loads may govern the design requirement for medium to long span TCC beams subjected to heavy environmental conditions. For such structures, application of simplified methods adopted by different codes may lead to significant errors. Hence investigating the long-term behaviour of TCC beams subject to variable environmental condition is of great importance for designers and researchers. In this paper the research undertaken on long-term behaviour of TCC floors is critically reviewed and the recent findings are highlighted. The most important references in the literature were selected to provide more depth into the time-dependent performance of TCC structure.
Long span timber floor solutions have demonstrated their potential to compete with concrete and steel construction for multi-storey commercial buildings. Due to the high strength-to-weight ratio of timber, serviceable vibration performance is a critical structural design issue for long spans. This project investigates the vibration performance of cross laminated timber for long span floors in the Australian and New Zealand building sector. Laboratory experiments and computer analysis are used to study the effect of the increased transverse stiffness, inherent to a cross laminated timber, on the vibration performance of the floor. The effect of boundary conditions, connection and support type, are investigated and quantified where possible. A timber joist floor with a plywood sheath is analysed and tested to validate the methods used in this study.