Skip header and navigation

4 records – page 1 of 1.

Design Methodology Analysis of Cross-Laminated Timber Elements Subjected to Flexure

https://research.thinkwood.com/en/permalink/catalogue7
Year of Publication
2014
Topic
Mechanical Properties
Material
CLT (Cross-Laminated Timber)
Application
Ceilings
Floors
Walls
Author
Vilguts, Aivars
Serdjuks, Dmitrijs
Mierinš, Imants
Publisher
Kaunas University of Technology
Year of Publication
2014
Country of Publication
Lithuania
Format
Journal Article
Material
CLT (Cross-Laminated Timber)
Application
Ceilings
Floors
Walls
Topic
Mechanical Properties
Keywords
Design
Flexural
FEM method
Testing
Panels
Language
English
Research Status
Complete
Series
Journal of Sustainable Architecture and Civil Engineering
ISSN
2335–2000
Summary
Cross-laminated timber is a structural material, which successfully used for structural purposes during the last years. The material is environmentally friendly and decreases CO2 emissions. Cross-laminated timber possesses a decreased level of anisotropy in comparison with solid and glued timber. It is significant for structural units working in bending. So, cross-laminated timber panels are considered as an object of investigation. Design methodology for cross-laminated timber panels subjected to flexure was presented. The methodology is based on LVS EN1995-1-1 and laminated plate theory. The presented methodology was tested experimentally and analytically. Behavior and mechanical properties of cross-laminated timber are analyzed for case of static loading. Two panels with thickness 95mm consisting from three layers were tested in laboratory. Freely supported panels with span equal to 2m, which is loaded by the uniformly distributed load was a design scheme of considered panels. The panel’s width was equal to 1m. Analytical FEM design method, which is based on the using of computational program ANSYSv14 and RFEM5.0, was checked by the experiment. The comparison of stresses acting in the edge fibers and vertical displacements shows that the considered design methodology can be used for engineering calculations. The result difference changes in limits to 30%.
Online Access
Free
Resource Link
Less detail

Design Methods for Load-Bearing Elements from Cross Laminated Timber

https://research.thinkwood.com/en/permalink/catalogue1116
Year of Publication
2015
Topic
Design and Systems
Material
CLT (Cross-Laminated Timber)
Author
Vilguts, Aivars
Serdjuks, Dmitrijs
Goremikins, Vadims
Publisher
IOP Publishing Ltd
Year of Publication
2015
Country of Publication
Latvia
Format
Report
Material
CLT (Cross-Laminated Timber)
Topic
Design and Systems
Keywords
FEM
Bending
Compression
Static Load
Pine
Uniformly Distributed Load
Strength
Stiffness
Language
English
Conference
International Conference on Innovative Materials, Structures and Technologies
Research Status
Complete
Notes
September 30-October 2 2015, Riga, Latvia
Summary
Cross-laminated timber is an environmentally friendly material, which possesses a decreased level of anisotropy in comparison with the solid and glued timber. Cross-laminated timber could be used for load-bearing walls and slabs of multi-storey timber buildings as well as decking structures of pedestrian and road bridges. Design methods of cross-laminated timber elements subjected to bending and compression with bending were considered. The presented methods were experimentally validated and verified by FEM. Two cross-laminated timber slabs were tested at the action of static load. Pine wood was chosen as a board's material. Freely supported beam with the span equal to 1.9 m, which was loaded by the uniformly distributed load, was a design scheme of the considered plates. The width of the plates was equal to 1 m. The considered cross-laminated timber plates were analysed by FEM method. The comparison of stresses acting in the edge fibres of the plate and the maximum vertical displacements shows that both considered methods can be used for engineering calculations. The difference between the results obtained experimentally and analytically is within the limits from 2 to 31%. The difference in results obtained by effective strength and stiffness and transformed sections methods was not significant.
Online Access
Free
Resource Link
Less detail

Design Methods of Elements from Cross-Laminated Timber Subjected to Flexure

https://research.thinkwood.com/en/permalink/catalogue189
Year of Publication
2015
Topic
Design and Systems
Mechanical Properties
Material
CLT (Cross-Laminated Timber)
Author
Vilguts, Aivars
Serdjuks, Dmitrijs
Pakrastins, Leonids
Publisher
ScienceDirect
Year of Publication
2015
Country of Publication
Netherlands
Format
Journal Article
Material
CLT (Cross-Laminated Timber)
Topic
Design and Systems
Mechanical Properties
Keywords
Finite Element Method (FEM)
Static Loading Test
Stress
Language
English
Research Status
Complete
Series
Procedia Engineering
Summary
Design methods of cross-laminated timber elements subjected to bending is considered. The methods are based on LVS EN 1995–1–1. The presented methods were checked by the experiment and analytically. Two cross-laminated timber plates with the total thickness of 95 mm were tested under action of static load. The considered cross-laminated timber plates were analysed by FEM method, which is based on the using of computational program ANSYSv14. The comparison of stresses acting in the edge fibres of the plate and the maximum vertical displacements shows that the considered methods can be used for engineering calculations so as the difference between the experimentally and analytically obtained results does not exceed 20%.
Online Access
Free
Resource Link
Less detail

Experimental Verification of Design Procedure for Elements from Cross-Laminated Timber

https://research.thinkwood.com/en/permalink/catalogue1353
Year of Publication
2017
Topic
Mechanical Properties
Design and Systems
Material
CLT (Cross-Laminated Timber)
Author
Buka-Vaivade, Karina
Serdjuks, Dmitrijs
Goremikins, Vadims
Vilguts, Aivars
Pakrastins, Leonids
Publisher
ScienceDirect
Year of Publication
2017
Country of Publication
Netherlands
Format
Journal Article
Material
CLT (Cross-Laminated Timber)
Topic
Mechanical Properties
Design and Systems
Keywords
Finite Element Model
Static Load
Transformed Section Method
Language
English
Research Status
Complete
Series
Procedia Engineering
Summary
Cross-laminated timber is widely used for load-bearing walls and panels of multi-storey timber buildings as well as for decking structure of pedestrian and road bridges. Design procedure for elements from cross-laminated timber was considered and validated by the experiment and FEM. The design procedure is based on the transformed section method. Eight cross-laminated timber panels with span equal to 1.8 m were experimentally checked under the action of static load. The difference between the experimentally and analytically obtained results is within the limits from 3.3 up to 20%.
Online Access
Free
Resource Link
Less detail