Skip header and navigation

5 records – page 1 of 1.

Cross-Laminated Timber for Seismic Regions: Progress and Challenges for Research and Implementation

https://research.thinkwood.com/en/permalink/catalogue162
Year of Publication
2014
Topic
Seismic
Material
CLT (Cross-Laminated Timber)
Application
Shear Walls
Author
Pei, Shiling
van de Lindt, John
Popovski, Marjan
Berman, Jeffrey
Dolan, Daniel
Ricles, James
Sause, Richard
Blomgren, Hans-Erik
Rammer, Douglas
Publisher
American Society of Civil Engineers
Year of Publication
2014
Format
Journal Article
Material
CLT (Cross-Laminated Timber)
Application
Shear Walls
Topic
Seismic
Keywords
Lateral Loads
Prefabrication
US
Research Status
Complete
Series
Journal of Structural Engineering
Summary
Compared to light-frame wood shear walls, it is relatively difficult for panelized CLT shear walls to achieve similar levels of lateral deflection without paying special attention to design details, i.e., connections. A design lacking ductility or energy dissipating mechanism will result in high acceleration amplifications and excessive global overturning demands for multistory buildings, and even more so for tall wood buildings. Although a number of studies have been conducted on CLT shear walls and building assemblies since the 1990s, the wood design community’s understanding of the seismic behavior of panelized CLT systems is still in the learning phase, hence the impetus for this article and the tall CLT building workshop, which will be introduced herein. For example, there has been a recent trend in engineering to improve resiliency, which seeks to design a building system such that it can be restored to normal functionality sooner after an earthquake than previously possible, i.e., it is a resilient system. While various resilient lateral system concepts have been explored for concrete and steel construction, this concept has not yet been realized for multistory CLT systems. This forum article presents a review of past research developments on CLT as a lateral force-resisting system, the current trend toward design and construction of tall buildings with CLT worldwide, and attempts to summarize the societal needs and challenges in developing resilient CLT construction in regions of high seismicity in the United States.
Online Access
Free
Resource Link
Less detail

Development and Full-Scale Validation of Resilience-Based Seismic Design of Tall Wood Buildings: The NHERI Tallwood Project

https://research.thinkwood.com/en/permalink/catalogue1477
Year of Publication
2017
Topic
Design and Systems
Seismic
Material
CLT (Cross-Laminated Timber)
Application
Walls
Wood Building Systems
Author
Pei, Shiling
van de Lindt, John
Ricles, James
Sause, Richard
Berman, Jeffrey
Ryan, Keri
Dolan, Daniel
Buchanan, Andrew
Robinson, Thomas
McDonnell, Eric
Blomgren, Hans-Erik
Popovski, Marjan
Rammer, Douglas
Year of Publication
2017
Format
Conference Paper
Material
CLT (Cross-Laminated Timber)
Application
Walls
Wood Building Systems
Topic
Design and Systems
Seismic
Keywords
Tall Wood
Post-Tensioned
Rocking Walls
Resilience-Based Seismic Design
Shaking Table Test
Conference
New Zealand Society for Earthquake Engineering Conference
Research Status
Complete
Notes
April 27-29, 2017, Wellington, New Zealand
Summary
With global urbanization trends, the demands for tall residential and mixeduse buildings in the range of 8~20 stories are increasing. One new structural system in this height range are tall wood buildings which have been built in select locations around the world using a relatively new heavy timber structural material known as cross laminated timber (CLT). With its relatively light weight, there is consensus amongst the global wood seismic research and practitioner community that tall wood buildings have a substantial potential to become a key solution to building future seismically resilient cities. This paper introduces the NHERI Tallwood Project recentely funded by the U.S. National Science Fundation to develop and validate a seismic design methodology for tall wood buildings that incorporates high-performance structural and nonstructural systems and can quantitatively account for building resilience. This will be accomplished through a series of research tasks planned over a 4-year period. These tasks will include mechanistic modeling of tall wood buildings with several variants of post-tensioned rocking CLT wall systems, fragility modeling of structural and non-structural building components that affect resilience, fullscale biaxial testing of building sub-assembly systems, development of a resilience-based seismic design (RBSD) methodology, and finally a series of full-scale shaking table tests of a 10-story CLT building specimen to validate the proposed design. The project will deliver a new tall building type capable of transforming the urban building landscape by addressing urbanization demand while enhancing resilience and sustainability.
Online Access
Free
Resource Link
Less detail

Experimental Investigation of Self-Centering Cross Laminated Timber Walls

https://research.thinkwood.com/en/permalink/catalogue1654
Year of Publication
2016
Topic
Seismic
Mechanical Properties
Material
CLT (Cross-Laminated Timber)
Application
Walls
Author
Ganey, Ryan
Berman, Jeffrey
Yao, Lihong
Dolan, Daniel
Akbas, Tugce
Loftus, Sara
Sause, Richard
Ricles, James
Pei, Shiling
van de Lindt, John
Blomgren, Hans-Erik
Year of Publication
2016
Format
Conference Paper
Material
CLT (Cross-Laminated Timber)
Application
Walls
Topic
Seismic
Mechanical Properties
Keywords
Lateral Load Resisting System
Post-Tensioning
U-Shaped Flexural Plates
Limit States
Self-Centering
Strength
Stiffness
Interstory Drifts
Conference
World Conference on Timber Engineering
Research Status
Complete
Notes
August 22-25, 2016, Vienna, Austria p. 3547-3554
Summary
This paper describes experiments conducted to develop a resilient lateral force resisting wall system that combines cross-laminated timber (CLT) panels with vertical post-tensioning (PT) to provide post-event re-centering. Supplemental mild steel U-shaped flexural plate devices (UFPs) are intended to yield under cyclic loading while the PT and CLT components remain undamaged until large inter-story drifts are experienced by the wall. The experiments were designed to explore various limit states for self-centering CLT (SC-CLT) walls, including their dependence on design variables and their impact on performance, and to investigate strength and stiffness degradation at large interstory drifts. It was found that the SC-CLT walls were able to re-center even after large drift cycles and the crushing of the CLT material was the governing limit sate for most specimens. A hierarchy of desirable limit states was identified consisting of UFP yielding, CLT splitting, PT yielding, and CLT crushing.
Online Access
Free
Resource Link
Less detail

Progress on the Development of Seismic Resilient Tall CLT Buildings in the Pacific Northwest

https://research.thinkwood.com/en/permalink/catalogue178
Year of Publication
2014
Topic
Seismic
Market and Adoption
Material
CLT (Cross-Laminated Timber)
Application
Wood Building Systems
Author
Pei, Shiling
Berman, Jeffrey
Dolan, Daniel
van de Lindt, John
Ricles, James
Sause, Richard
Blomgren, Hans-Erik
Popovski, Marjan
Rammer, Douglas
Year of Publication
2014
Format
Conference Paper
Material
CLT (Cross-Laminated Timber)
Application
Wood Building Systems
Topic
Seismic
Market and Adoption
Keywords
Commercial
High-Rise
Residential
US Market
Economical
Sustainable
Conference
World Conference on Timber Engineering
Research Status
Complete
Notes
August 10-14, 2014, Quebec City, Canada
Summary
As urban densification occurs in U.S. regions of high seismicity, there is a natural demand for seismically resilient tall buildings that are reliable, economically viable, and can be rapidly constructed. In urban regions on the west coast of the U.S., specifically the Pacific Northwest, there is significant interest in utilizing CLT in 8-20 story residential and commercial buildings due to its appeal as a potential locally sourced, sustainable and economically competitive building material. In this study, results from a multi-disciplinary discussion on the feasibility and challenges in enabling tall CLT building for the U.S. market were summarized. A three-tiered seismic performance expectations that can be implemented for tall CLT buildings was proposed to encourage the adoption of the system at a practical level. A road map for building tall CLT building in the U.S. was developed, together with three innovative conceptual CLT systems that can help reaching resiliency goals. This study is part of an on-going multi-institution research project funded by National Science Foundation
Online Access
Free
Resource Link
Less detail

Progress on the Development of Strong Seismic Resilient Tall CLT Buildings in the Pacific Northwest

https://research.thinkwood.com/en/permalink/catalogue1881
Year of Publication
2014
Topic
Seismic
Material
CLT (Cross-Laminated Timber)
Application
Wood Building Systems
Author
Pei, Shiling
Berman, Jeffrey
Dolan, Daniel
van de Lindt, John
Ricles, James
Sause, Richard
Blomgren, Hans-Erik
Popovski, Marjan
Rammer, Douglas
Year of Publication
2014
Format
Conference Paper
Material
CLT (Cross-Laminated Timber)
Application
Wood Building Systems
Topic
Seismic
Keywords
Tall Wood
Seismic Performance
Resilience-Based Seismic Design
Conference
World Conference on Timber Engineering
Research Status
Complete
Summary
As urban densification occurs in U.S. regions of high seismicity, there is a natural demand for seismically resilient tall buildings that are reliable, economically viable, and can be rapidly constructed. In urban regions on the west coast of the U.S., specifically the Pacific Northwest, there is significant interest in utilizing CLT in 8-20 story residential and commercial buildings due to its appeal as a potential locally sourced, sustainable and economically competitive building material. In this study, results from a multi-disciplinary discussion on the feasibility and challenges in enabling tall CLT building for the U.S. market were summarized. A three-tiered seismic performance expectations that can be implemented for tall CLT buildings was proposed to encourage the adoption of the system at a practical level. A road map for building tall CLT building in the U.S. was developed, together with three innovative conceptual CLT systems that can help reaching resiliency goals. This study is part of an on-going multi-institution research project funded by National Science Foundation.
Online Access
Free
Resource Link
Less detail