Skip header and navigation

4 records – page 1 of 1.

Application of Modern Wood Product Glulam in Timber Frame with Tenon- Mortise Joints and its Structural Behavior

https://research.thinkwood.com/en/permalink/catalogue2469
Year of Publication
2019
Topic
Connections
Mechanical Properties
Material
Glulam (Glue-Laminated Timber)

Block Shear Strength and Delamination of Cross-Laminated Timber Fabricated with Japanese Larch

https://research.thinkwood.com/en/permalink/catalogue1220
Year of Publication
2016
Topic
Mechanical Properties
Material
CLT (Cross-Laminated Timber)
Author
Gong, Yingchun
Wu, Guofang
Ren, Haiqing
Publisher
North Carolina State University
Year of Publication
2016
Format
Journal Article
Material
CLT (Cross-Laminated Timber)
Topic
Mechanical Properties
Keywords
Larch
Delamination
Block Shear Strength
Temperature
One-Component Polyurethane
Research Status
Complete
Series
BioResources
Summary
Process parameters of cross-laminated timber (CLT) fabricated with Japanese larch were evaluated. The process parameters were designed by using an orthogonal test including pressure, glue consumption, and adhesive. Both delamination and block shear tests were conducted on CLT in accordance with GB/T 26899 (2011). The results showed that the optimum process parameters were A2B3C2 including pressure (1.2 MPa), glue consumption (200g/m2), and amount of sdhesive (one-component plyurethane). The weight loss and moisture absoption increased when the temperature increased, but the block shear strength decreased as the temperature was raised from 20C to 230C.
Online Access
Free
Resource Link
Less detail

Factors that Affect Bolted Joints in Japanese Larch Glulam

https://research.thinkwood.com/en/permalink/catalogue1560
Year of Publication
2016
Topic
Connections
Mechanical Properties
Material
Glulam (Glue-Laminated Timber)
Author
Zhao, Rongjun
Wang, Zi
Ren, Haiqing
Zhou, Haibin
Xing, Xinting
Zhong, Yong
Year of Publication
2016
Format
Conference Paper
Material
Glulam (Glue-Laminated Timber)
Topic
Connections
Mechanical Properties
Keywords
Japanese Larch
Bolted Joints
Loading Test
China
Conference
World Conference on Timber Engineering
Research Status
Complete
Notes
August 22-25, 2016, Vienna, Austria p. 1458-1463
Summary
Japanese larch (Larix kaempferi) is an important species in China. The extensive use of Japanese larch can alleviate lumber shortage in China. Various grades of Japanese larch (Larix kaempferi) laminas were chosen to study the factors that affect the bolted joint performance. By comparing the loading test results with the required design values,it revealed that: (1) Bolt diameter affected the loading performance, then, bolt class, and the lamina grade was the least influential factor. (2) Japanese larch glulam can achieve the required designed value to be used as structural materials.
Online Access
Free
Resource Link
Less detail

Predicting the Average Compression Strength of CLT by Using the Average Density or Compressive Strength of Lamina

https://research.thinkwood.com/en/permalink/catalogue3020
Year of Publication
2022
Topic
Mechanical Properties
Material
CLT (Cross-Laminated Timber)
Author
Tian, Zhaopeng
Gong, Yingchun
Xu, Junhua
Li, Mingyue
Wang, Zhaohui
Ren, Haiqing
Organization
Chinese Academy of Forestry
Editor
Elustondo, Diego
Publisher
MDPI
Year of Publication
2022
Format
Journal Article
Material
CLT (Cross-Laminated Timber)
Topic
Mechanical Properties
Keywords
Compressive Strength
Density
Linear Regression Analysis
Monte Carlo Simulation
Plated Larch
Prediction Model
Research Status
Complete
Series
Forests
Summary
The compressive strength in the major direction of cross-laminated timber CLT is the key to supporting the building load when CLT is used as load-bearing walls in high-rise wood structures. This study mainly aims to present a model for predicting the average compressive strength of CLT and promoting the utilization of CLT made out of planted larch. The densities and compressive strengths of lamina specimens and CLT samples with widths of 89 and 178 mm were evaluated, and their relationship was analyzed to build a prediction model by using Monte Carlo simulation. The results reveal that the average density of the lamina and CLT were about equal, whereas the average compressive strength of the CLT was just about 72% of that of the lamina. Width exerted no significant effect on the average compressive strength of the CLT, but homogenization caused the wider CLT to have a smaller variation than that of the lamina. The average compressive strength of the lamina could be calculated by using the average density of lamina multiply by 103.10, and the average compressive strength of the CLT could be calculated according to the compression strength of lamina in major and minor direction, therefore, a new prediction model is determined to predict the average compression strength of CLT by using the average density of lamina or CLT, the average compression strength of CLT made in this study is about 74.23 times of the average density of the lamina. The results presented in this study can be used to predict the average compressive strength of CLT by using the average density of lamina and provide a fundamental basis for supporting the utilization of CLT as load-bearing walls.
Online Access
Free
Resource Link
Less detail