Skip header and navigation

2 records – page 1 of 1.

Structural Testing for Framework Office Building in Portland, OR

https://research.thinkwood.com/en/permalink/catalogue1829
Year of Publication
2017
Topic
Design and Systems
Mechanical Properties
Material
CLT (Cross-Laminated Timber)
Glulam (Glue-Laminated Timber)
Application
Walls
Wood Building Systems
Organization
Oregon State University
Portland State University
Year of Publication
2017
Country of Publication
United States
Format
Report
Material
CLT (Cross-Laminated Timber)
Glulam (Glue-Laminated Timber)
Application
Walls
Wood Building Systems
Topic
Design and Systems
Mechanical Properties
Keywords
Crushing Test
In-Plane Shear Test
Beam-Column Connection
Panels
Earthquake
Language
English
Research Status
Complete
Series
Framework: An Urban + Rural Design
Summary
A. Structural Test Results Summary B. Test 1, 2, 3: 1. CLT Crushing Test Report 2. Bare CLT Wall Panel Test Report 3. CLT In-Plane Shear Wall Test Report C. Glulam Beam-Column Connection Test Report
Online Access
Free
Resource Link
Less detail

Towards Resilient Mass Timber Systems: Understanding Durability of Cross-Laminated Timber Connections

https://research.thinkwood.com/en/permalink/catalogue2293
Topic
Connections
Material
CLT (Cross-Laminated Timber)
Application
General Application
Organization
Oregon State University
Portland State University
Country of Publication
United States
Material
CLT (Cross-Laminated Timber)
Application
General Application
Topic
Connections
Keywords
Durability
Mass Timber
Moisture
Ultrasonic
Cyclic Loading Tests
Research Status
In Progress
Notes
Project contact is Arijit Sinha.
Summary
Cross Laminated Timber (CLT) is gaining acceptance in tall building applications in the US. However, there are knowledge gaps concerning long-term performance, particularly effects due to moisture intrusion and biological decay in relation to connection systems. In a risk-averse industry, this knowledge gap impedes acceptance of CLT. The overall goal of the project is to characterize the effects of moisture accumulation in mass timber buildings on properties of building components and connections. The project will assess CLT connectors using small-scale assemblies, then use these data to develop predictive models that will be compared with full-scale tests. Connection assemblies will be constructed with two wood species and exposed to five moisture/biological regimes. Moisture behavior in the assemblies will be characterized using a combination of non-destructive tools, such as ultrasonic, wave propagation, CAT-Scan, and infrared imaging. The data generated from cyclic loading tests will be used to calibrate the SAWS connection model. This will provide a novel way to estimate the effects of moisture and biological degradation on connections. A deliverable for this project is a design guideline for engineers to account for the effects of moisture intrusion and subsequent fungal decay on panel and connection properties.
Less detail