Skip header and navigation

8 records – page 1 of 1.

Cross-Laminated Timber Rocking Wall with Replaceable Fuses: Validation through Full-Scale Shake Table Testing

https://research.thinkwood.com/en/permalink/catalogue2027
Year of Publication
2018
Topic
Seismic
Design and Systems
Material
CLT (Cross-Laminated Timber)
Application
Walls

Development and Full-Scale Validation of Resilience-Based Seismic Design of Tall Wood Buildings: The NHERI Tallwood Project

https://research.thinkwood.com/en/permalink/catalogue1477
Year of Publication
2017
Topic
Design and Systems
Seismic
Material
CLT (Cross-Laminated Timber)
Application
Walls
Wood Building Systems
Author
Pei, Shiling
van de Lindt, John
Ricles, James
Sause, Richard
Berman, Jeffrey
Ryan, Keri
Dolan, Daniel
Buchanan, Andrew
Robinson, Thomas
McDonnell, Eric
Blomgren, Hans-Erik
Popovski, Marjan
Rammer, Douglas
Year of Publication
2017
Country of Publication
New Zealand
Format
Conference Paper
Material
CLT (Cross-Laminated Timber)
Application
Walls
Wood Building Systems
Topic
Design and Systems
Seismic
Keywords
Tall Wood
Post-Tensioned
Rocking Walls
Resilience-Based Seismic Design
Shaking Table Test
Language
English
Conference
New Zealand Society for Earthquake Engineering Conference
Research Status
Complete
Notes
April 27-29, 2017, Wellington, New Zealand
Summary
With global urbanization trends, the demands for tall residential and mixed-use buildings in the range of 8~20 stories are increasing. One new structural system in this height range are tall wood buildings which have been built in select locations around the world...
Online Access
Free
Resource Link
Less detail

Direct Displacement Design of Tall CLT Building with Deformable Diaphragms

https://research.thinkwood.com/en/permalink/catalogue1650
Year of Publication
2016
Topic
Design and Systems
Seismic
Material
CLT (Cross-Laminated Timber)
Application
Wood Building Systems
Author
Bolvardi, Vahab
Pei, Shiling
van de Lindt, John
Dolan, James
Year of Publication
2016
Country of Publication
Austria
Format
Conference Paper
Material
CLT (Cross-Laminated Timber)
Application
Wood Building Systems
Topic
Design and Systems
Seismic
Keywords
Inter-Story Isolation
Displacement-Based Design
Simulation
Language
English
Conference
World Conference on Timber Engineering
Research Status
Complete
Notes
August 22-25, 2016, Vienna, Austria p. 3506-3514
Summary
In order to cope with the speed of urbanization around the world especially in areas of high seismicity, researchers and engineers have always been investigating cost-effective building systems with high seismic performance. Cross Laminated Timber (CLT) is a wood based material that is suitable for tall building construction. However, the...
Online Access
Free
Resource Link
Less detail

Executive Report: Full-Scale Shake Table Testing of a Two-Story Mass Timber Building with Resilient Rocking Wall Lateral System

https://research.thinkwood.com/en/permalink/catalogue1151
Year of Publication
2017
Topic
Seismic
Design and Systems
Material
CLT (Cross-Laminated Timber)
Timber-Concrete Composite
Application
Wood Building Systems

Hygrothermal Characterization and Modeling of Cross-Laminated Timber in the Building Envelope

https://research.thinkwood.com/en/permalink/catalogue2562
Year of Publication
2020
Topic
Moisture
Design and Systems
Material
CLT (Cross-Laminated Timber)
Application
Building Envelope
Author
Kordziel, Steven
Glass, Samuel
Boardman, Charles
Munson, Robert
Zelinka, Samuel
Pei, Shiling
Tabares-Velasco, Paulo
Year of Publication
2020
Country of Publication
United States
Format
Journal Article
Material
CLT (Cross-Laminated Timber)
Application
Building Envelope
Topic
Moisture
Design and Systems
Keywords
Building Envelope
Hygrothermal Modeling
Moisture Performance
Water Uptake
Hygric Redistribution
Language
English
Research Status
Complete
Series
Building and Environment
Summary
Cross-laminated timber (CLT) is a type of mass timber panel used in floor, wall, and roof assemblies. An important consideration in design and construction of timber buildings is moisture durability. This study characterized the hygrothermal performance of CLT panels with laboratory measurements at multiple scales, field measurements, and modeling. The CLT panels consisted of five layers, four with spruce-pine-fir lumber and one with Douglas-fir lumber. Laboratory characterization involved measurements on small specimens that included material from only one or two layers and large specimens that included all five layers of the CLT panel. Water absorption was measured with panel specimens partially immersed in water, and a new method was developed where panels were exposed to ponded water on the top surface. This configuration gave a higher rate of water uptake than the partial immersion test. The rate of drying was much slower when the wetted surface was covered with an impermeable membrane. Measured hygrothermal properties were implemented in a one-dimensional transient hygrothermal model. Simulation of water uptake indicated that vapor diffusion had a significant contribution in parallel with liquid transport. A simple approximation for liquid transport coefficients, with identical coefficients for suction and redistribution, was adequate for simulating panel-scale wetting and drying. Finally, hygrothermal simulation of a CLT roof assembly that had been monitored in a companion field study showed agreement in most cases within the sensor uncertainty. Although the hygrothermal properties are particular to the wood species and CLT panels investigated here, the modeling approach is broadly applicable.
Online Access
Free
Resource Link
Less detail

Performance Based Design and Force Modification Factors for CLT Structures

https://research.thinkwood.com/en/permalink/catalogue928
Year of Publication
2012
Topic
Seismic
Design and Systems
Material
CLT (Cross-Laminated Timber)
Application
Wood Building Systems
Walls

Seismic Design of Cross-Laminated Timber Platform Buildings Using a Coupled Shearwall Concept

https://research.thinkwood.com/en/permalink/catalogue1245
Year of Publication
2017
Topic
Design and Systems
Seismic
Material
CLT (Cross-Laminated Timber)
Application
Shear Walls
Wood Building Systems
Floors
Author
Pei, Shiling
Lenon, Conor
Kingsley, Gregory
Deng, Peng
Publisher
American Society of Civil Engineers
Year of Publication
2017
Country of Publication
United States
Format
Journal Article
Material
CLT (Cross-Laminated Timber)
Application
Shear Walls
Wood Building Systems
Floors
Topic
Design and Systems
Seismic
Keywords
Coupling
Language
English
Research Status
Complete
Series
Journal of Architectural Engineering
Summary
Cross-laminated timber (CLT) is an engineered wood material that was introduced in the last decade as a promising candidate for building wood structures higher than 10 stories. Thus far, a handful of tall residential CLT buildings have been built in low seismic regions around the world...
Online Access
Free
Resource Link
Less detail

Tall Cross-Laminated Timber Building: Design and Performance Session WW300 Experimental and Modeling Studies on Wood Frame Buildings

https://research.thinkwood.com/en/permalink/catalogue618
Year of Publication
2014
Topic
Design and Systems
Seismic
Material
CLT (Cross-Laminated Timber)
Application
Walls
Wood Building Systems
Author
Dolan, Daniel
Bordry, Vincent
Pei, Shiling
van de Lindt, John
Organization
Structures Congress
Publisher
American Society of Civil Engineers
Year of Publication
2014
Country of Publication
United States
Format
Conference Paper
Material
CLT (Cross-Laminated Timber)
Application
Walls
Wood Building Systems
Topic
Design and Systems
Seismic
Keywords
Damping
Multi-Story
Ductility
Cost
Fire Resistance
Language
English
Conference
Structures Congress 2014
Research Status
Complete
Notes
April 3-5, 2014, Boston, Massachusetts, United States
Summary
Cross-laminated timber (CLT) is widely perceived as the most promising option for building high-rise wood structures due to its structural robustness and good fire resistance. While gravity load design of a tall CLT building is relatively easy to address...
Online Access
Payment Required
Resource Link
Less detail

8 records – page 1 of 1.