Skip header and navigation

15 records – page 1 of 2.

Comparative Energy Consumption Study on Tall Cross Laminated Timber Buildings for U.S. Climates

https://research.thinkwood.com/en/permalink/catalogue1636
Year of Publication
2016
Topic
Energy Performance
Material
CLT (Cross-Laminated Timber)
Application
Wood Building Systems
Author
Pei, Shiling
Khavari, Ali
Tabares-Velasco, Paulo
Zhao, Shichun
Year of Publication
2016
Country of Publication
Austria
Format
Conference Paper
Material
CLT (Cross-Laminated Timber)
Application
Wood Building Systems
Topic
Energy Performance
Keywords
US
Energy Efficiency
Internal Loads
Climate
Language
English
Conference
World Conference on Timber Engineering
Research Status
Complete
Notes
August 22-25, 2016, Vienna, Austria p. 3134-3141
Summary
Tall building (higher than 8 stories) construction using Cross laminated timber (CLT) is a relatively new trend for urban developments around the world. In the U.S., there is great interest in utilizing the potential of this new construction material. By analyzing a ten-story condominium building model constructed using building energy...
Online Access
Free
Resource Link
Less detail

Development and Full-Scale Validation of Resilience-Based Seismic Design of Tall Wood Buildings: The NHERI Tallwood Project

https://research.thinkwood.com/en/permalink/catalogue1477
Year of Publication
2017
Topic
Design and Systems
Seismic
Material
CLT (Cross-Laminated Timber)
Application
Walls
Wood Building Systems
Author
Pei, Shiling
van de Lindt, John
Ricles, James
Sause, Richard
Berman, Jeffrey
Ryan, Keri
Dolan, Daniel
Buchanan, Andrew
Robinson, Thomas
McDonnell, Eric
Blomgren, Hans-Erik
Popovski, Marjan
Rammer, Douglas
Year of Publication
2017
Country of Publication
New Zealand
Format
Conference Paper
Material
CLT (Cross-Laminated Timber)
Application
Walls
Wood Building Systems
Topic
Design and Systems
Seismic
Keywords
Tall Wood
Post-Tensioned
Rocking Walls
Resilience-Based Seismic Design
Shaking Table Test
Language
English
Conference
New Zealand Society for Earthquake Engineering Conference
Research Status
Complete
Notes
April 27-29, 2017, Wellington, New Zealand
Summary
With global urbanization trends, the demands for tall residential and mixed-use buildings in the range of 8~20 stories are increasing. One new structural system in this height range are tall wood buildings which have been built in select locations around the world...
Online Access
Free
Resource Link
Less detail

Development of Seismic Performance Factors for Cross Laminated Timber: Phase 2

https://research.thinkwood.com/en/permalink/catalogue803
Topic
Seismic
Material
CLT (Cross-Laminated Timber)
Application
Wood Building Systems
Author
van de Lindt, John
Rammer, Douglas
Pei, Shiling
Organization
Forest Products Laboratory
Country of Publication
United States
Format
Report
Material
CLT (Cross-Laminated Timber)
Application
Wood Building Systems
Topic
Seismic
Keywords
Seismic Performance Factors
US
Research Status
In Progress
Summary
A collaborative project between the Forest Products Laboratory and Colorado State University to develop seismic performance factors for cross laminated timber is underway. The project requires application of the FEMA P-695 methodology, which is purposely...
Resource Link
Less detail

Direct Displacement Design of Tall CLT Building with Deformable Diaphragms

https://research.thinkwood.com/en/permalink/catalogue1650
Year of Publication
2016
Topic
Design and Systems
Seismic
Material
CLT (Cross-Laminated Timber)
Application
Wood Building Systems
Author
Bolvardi, Vahab
Pei, Shiling
van de Lindt, John
Dolan, James
Year of Publication
2016
Country of Publication
Austria
Format
Conference Paper
Material
CLT (Cross-Laminated Timber)
Application
Wood Building Systems
Topic
Design and Systems
Seismic
Keywords
Inter-Story Isolation
Displacement-Based Design
Simulation
Language
English
Conference
World Conference on Timber Engineering
Research Status
Complete
Notes
August 22-25, 2016, Vienna, Austria p. 3506-3514
Summary
In order to cope with the speed of urbanization around the world especially in areas of high seismicity, researchers and engineers have always been investigating cost-effective building systems with high seismic performance. Cross Laminated Timber (CLT) is a wood based material that is suitable for tall building construction. However, the...
Online Access
Free
Resource Link
Less detail

Ductility Based Force Reduction Factors for Symmetrical Cross-Laminated Timber Structures

https://research.thinkwood.com/en/permalink/catalogue446
Year of Publication
2014
Topic
Mechanical Properties
Seismic
Material
CLT (Cross-Laminated Timber)
Application
Wood Building Systems
Walls
Author
Popovski, Marjan
Pei, Shiling
van de Lindt, John
Karacabeyli, Erol
Organization
European Association of Earthquake Engineering
Year of Publication
2014
Country of Publication
Canada
Format
Conference Paper
Material
CLT (Cross-Laminated Timber)
Application
Wood Building Systems
Walls
Topic
Mechanical Properties
Seismic
Keywords
Force Modification Factors
Ductility
National Building Code of Canada
Fasteners
Seismic Performance
Language
English
Conference
Second European Conference on Earthquake Engineering and Seismology
Research Status
Complete
Notes
August 25-29, 2014, Istanbul, Turkey
Online Access
Free
Resource Link
Less detail

Energy Consumption Analysis of Multistory Cross-Laminated Timber Residential Buildings: A Comparative Study

https://research.thinkwood.com/en/permalink/catalogue695
Year of Publication
2016
Topic
Energy Performance
Material
CLT (Cross-Laminated Timber)
Application
Wood Building Systems
Author
Khavari, Ali
Pei, Shiling
Tabares-Velasco, Paulo
Publisher
American Society of Civil Engineers
Year of Publication
2016
Country of Publication
United States
Format
Journal Article
Material
CLT (Cross-Laminated Timber)
Application
Wood Building Systems
Topic
Energy Performance
Keywords
Energy Consumption
Energy Efficiency
Residential
Sensitivity Analysis
Language
English
Research Status
Complete
Series
Journal of Architectural Engineering
Summary
Cross laminated timber (CLT) is a new panelized mass timber product that is suitable for building tall wood buildings (higher than eight stories) because of its structural robustness and superior fire resistance as compared with traditional light-framed ...
Online Access
Free
Resource Link
Less detail

Executive Report: Full-Scale Shake Table Testing of a Two-Story Mass Timber Building with Resilient Rocking Wall Lateral System

https://research.thinkwood.com/en/permalink/catalogue1151
Year of Publication
2017
Topic
Seismic
Design and Systems
Material
CLT (Cross-Laminated Timber)
Timber-Concrete Composite
Application
Wood Building Systems

Force Modification Factors for Cross Laminated Timber Buildings

https://research.thinkwood.com/en/permalink/catalogue363
Year of Publication
2012
Topic
Seismic
Market and Adoption
Material
CLT (Cross-Laminated Timber)
Application
Wood Building Systems
Author
Pei, Shiling
Popovski, Marjan
van de Lindt, John
Organization
FPInnovations
Year of Publication
2012
Country of Publication
Canada
Format
Report
Material
CLT (Cross-Laminated Timber)
Application
Wood Building Systems
Topic
Seismic
Market and Adoption
Keywords
Performance-Based Seismic Design
Canada
US
Force Modification Factors
Mid-Rise
Language
English
Research Status
Complete
Summary
European experience shows that Cross-Laminated Timber (CLT) can be competitive in mid-rise and high-rise buildings. Although this system has not been used to the same extent so far in North America, it can be viable wood structural solution for the shift towards sustainable densification of urban and suburban centers. For these reasons FPInnovations has undertaken a multi-disciplinary project on determining the performance of a typical CLT construction, including quantifying the seismic resistance and force modification factors for CLT buildings in Canada and the US. In this report, a performance-based seismic design (PBSD) of a CLT building was conducted and the seismic response of the CLT building was compared to that of a wood-frame structure tested during the NEESWood project. A suitable force modification factors (R-factors) for CLT mid-rise buildings with different fasteners were recommended for seismic design in Canada and the US. The six-storey NEESWood Capstone building was redesigned as a CLT building using the PBSD procedure developed during the NEESWood project. The results from the quasi-static tests on CLT walls performed at FPInnovations were used as input information for modeling of the main load resisting elements of the structure, the CLT walls. Once the satisfactory design of the CLT mid-rise structure was established through PBSD, a force-based design was developed with varying R-factors and that design was compared to the PBSD result. In this way, suitable R-factors were calibrated so that they can yield equivalent seismic performance of the CLT building when designed using the traditional force-based design methods. Based on the results of this study it is recommended that a value of Rd=2.5 and Ro=1.5 can be assigned for structures with symmetrical floor plans according to NBCC. In the US an R=4.5 can be used for symmetrical CLT structures designed according to ASCE7. These values can be assigned provided that the design values for CLT walls considered (and implemented in the material design standards) are similar to the values determined in this study using the kinematics model developed that includes the influence of the hold-downs in the CLT wall resistance. Design of the CLT building with those R-factors using the equivalent static procedures in the US and Canada will result in the CLT building having similar seismic performance to that of the tested wood-frame NEESWood building, which had only minor non-structural damage during a rare earthquake event.
Online Access
Free
Resource Link
Less detail

Performance Based Design and Force Modification Factors for CLT Structures

https://research.thinkwood.com/en/permalink/catalogue928
Year of Publication
2012
Topic
Seismic
Design and Systems
Material
CLT (Cross-Laminated Timber)
Application
Wood Building Systems
Walls

Performance of Wood Adhesive for Cross Laminated Timber Under Elevated Temperatures

https://research.thinkwood.com/en/permalink/catalogue1831
Year of Publication
2018
Topic
Mechanical Properties
Fire
Material
CLT (Cross-Laminated Timber)
Application
Wood Building Systems

15 records – page 1 of 2.