Skip header and navigation

38 records – page 1 of 4.

Determination of seismic performance factors for cross-laminated timber shear walls based on FEMA P695 methodology

https://research.thinkwood.com/en/permalink/catalogue3215
Year of Publication
2022
Topic
Seismic
Material
CLT (Cross-Laminated Timber)
Application
Shear Walls
Author
Lindt, John van de
Amini, M. Omar
Rammer, Douglas
Line, Philip
Pei, Shiling
Popovski, Marjan
Organization
Forest Products Laboratory
Year of Publication
2022
Format
Report
Material
CLT (Cross-Laminated Timber)
Application
Shear Walls
Topic
Seismic
Keywords
Seismic Design
Mass Timber Design
FEMA P695
Research Status
Complete
Summary
Cross-laminated timber (CLT) construction has been gaining popularity in North America. However, CLT-based seismic force resisting systems are not recognized in current U.S. design codes, which is among the many challenges preventing widespread adoption of CLT in the United States. The purpose of this study was to investigate the seismic behavior of CLT-based shear wall systems and to determine seismic performance factors, namely, the response modification factor (R factor), the system overstrength factor(O), and the deflection amplification factor (Cd), using the FEMA P695 procedure. Nine index buildings including single-family dwellings, multifamily dwellings, and commercial (including mixed use) midrise buildings were developed, from which 72 archetypes were extracted. Testing performed at the component and subassembly levels included connector tests and isolated shear wall tests. A CLT shear wall design method was developed and used to design the archetypes, which were then assessed with nonlinear pushover analysis and incremental dynamic analysis. Based on the required collapse margin, an R factor of 3 is proposed for CLT shear wall systems with 2:1 or mixed aspect ratio panels up to 4:1, and an R factor of 4 is proposed for CLT shear wall systems made up of only 4:1 aspect ratio panels. Results from this study have been proposed for recognition in U.S. building codes (such as the International Building Code) through specific change proposals to update reference standards such as ASCE 7 Minimum Design Loads and Associated Criteria for Buildings and Other Structures and Special Design Provisions for Wind and Seismic.
Online Access
Free
Resource Link
Less detail

Carbon Impact and Cost of Mass Timber Beam–Column Gravity Systems

https://research.thinkwood.com/en/permalink/catalogue2883
Year of Publication
2021
Topic
Environmental Impact
Application
Frames
Author
Chaggaris, Rachel
Pei, Shiling
Kingsley, Greg
Feitel, Alexis
Organization
Colorado School of Mines
Editor
Ganguly, Indroneil
Publisher
MDPI
Year of Publication
2021
Format
Journal Article
Application
Frames
Topic
Environmental Impact
Keywords
IBC
Tall Wood Buildings
Gravity Framing System
Embodied Carbon
Mass Timber
Biogenic Carbon
Research Status
Complete
Series
Sustainability
Summary
The need to lower the embodied carbon impact of the built environment and sequester carbon over the life of buildings has spurred the growth of mass timber building construction, leading to the introduction of new building types (Types IV-A, B, and C) in the 2021 International Building Code (IBC). The achievement of sustainability goals has been hindered by the perceived first cost assessment of mass timber systems. Optimizing cost is an urgent prerequisite to embodied carbon reduction. Due to a high level of prefabrication and reduction in field labor, the mass timber material volume constitutes a larger portion of total project cost when compared to buildings with traditional materials. In this study, the dollar cost, carbon emitted, and carbon sequestered of mass timber beam–column gravity system solutions with different design configurations was studied. Design parameters studied in this sensitivity analysis included viable building types, column grid dimension, and building height. A scenario study was conducted to estimate the economic viability of tall wood buildings with respect to land costs. It is concluded that, while Type III building designations are the most economical for lower building heights, the newly introduced Type IV subcategories remain competitive for taller structures while providing a potentially significant embodied carbon benefit.
Online Access
Free
Resource Link
Less detail

Rocking Behavior of High-Aspect-Ratio Cross-Laminated Timber Shear Walls: Experimental and Numerical Investigation

https://research.thinkwood.com/en/permalink/catalogue3220
Year of Publication
2021
Topic
Mechanical Properties
Material
CLT (Cross-Laminated Timber)
Application
Shear Walls
Author
Amini, M. Omar
Lindt, John W. van de
Rammer, Douglas
Pei, Shiling
Organization
Forest Products Laboratory
Publisher
ASCE
Year of Publication
2021
Format
Journal Article
Material
CLT (Cross-Laminated Timber)
Application
Shear Walls
Topic
Mechanical Properties
Keywords
Shake-table Testing
Nonlinear Modeling
Research Status
Complete
Series
Journal of Architectural Engineering
Summary
Cross-laminated timber (CLT) is a mass timber product that has recently garnered considerable attention for lateral-force resisting system (LFRS) applications. The main objectives of this study were to investigate the rocking behavior of a high-aspect-ratio (height/width) CLT shear wall without post-tensioning, and to validate a finite-element (FE) model based on the cyclic and dynamic response of the wall. To this point, high-aspect-ratio walls in the literature have primarily been post-tensioned. The testing component of this study included connector tests, quasistatic cyclic shear wall tests, and shake-table tests under four different ground motions scaled to design earthquake (DE)- and maximum considered earthquake (MCE)-level intensities. A generic shear connector was used for this study to allow for proprietary and other systems to demonstrate equivalence. The connectors were tested under shear and uplift, and shear-wall tests were performed using the Consortium of Universities for Research in Earthquake Engineering (CUREE) displacement protocol, which has been widely used for light-frame wood structures. Interstory drift (ISD) ratios in the shake-table tests ranged from 0.97% to 2.02%, and the tests demonstrated the system’s ability to resist seismic loading. An FE model of the CLT wall was developed that showed good agreement with the cyclic and shake-table tests. The difference between the ISD ratios in the numerical model and the shake-table tests ranged from 5.4% to 31.3%, with an average of 17.9%, which was in good accordance with the accuracy of the existing CLT models. This system can be utilized as a retrofit option, in conjunction with light-frame wood shear walls, where lack of space may be a challenge.
Online Access
Free
Resource Link
Less detail

Equivalent lateral force procedure for a building with a self-centering rocking story of cross-laminated timber (CLT) walls

https://research.thinkwood.com/en/permalink/catalogue3223
Year of Publication
2021
Topic
Seismic
Material
CLT (Cross-Laminated Timber)
Application
Shear Walls
Author
Ricco, Marco Lo
Rammer, Douglas
Amini, M. Omar
Ghorbanpoor, Al
Pei, Shiling
Zimmerman, Reid B.
Organization
Forest Products Laboratory
Year of Publication
2021
Format
Conference Paper
Material
CLT (Cross-Laminated Timber)
Application
Shear Walls
Topic
Seismic
Keywords
Equivalent Lateral Force Procedure
Seismic Isolation
Rocking Story
Pendulum
Conference
World Conference on Timber Engineering
Research Status
Complete
Summary
The Equivalent Lateral Force (ELF) procedure is the most widely used seismic analysis approach, because of its simplicity and practicality in preliminary and final design phases. This paper applies the ELF procedure to a hypothetical building that stands 5 stories tall, with a 4-story superstructure supported on a rocking story of elliptically profiled cross-laminated timber (CLT) walls. First-generation prototypes made from six CLT panels of 5-ply, 175 mm, thickness—each measuring 2.44 m by 3.66 m in respective width and height—demonstrated that elliptical geometry controls lateral stiffness, inherent damping, and self-centering of the walls. Full-scale, cyclic, quasi-static, lateral-load-displacement tests—under simulated gravity loads ranging from 133 to 400 kN—established effective stiffness and damping inputs for the ELF procedure. The prototypes produced two modes of elliptical pendulum response by changing steel connections to the floor and ceiling beams. The first connection guides panels through rolling, and the second connection forces panels into slip-friction for enhanced damping but reduced durability of CLT. Because the base rocking story of elliptically profiled CLT walls behaves like an inverted pendulum system, the ELF procedure references existing design provisions for seismically isolated structures.
Online Access
Free
Resource Link
Less detail

Long-Term Moisture Monitoring Results of an Eight-Story Mass Timber Building in the Pacific Northwest

https://research.thinkwood.com/en/permalink/catalogue3240
Year of Publication
2021
Topic
Moisture
Material
CLT (Cross-Laminated Timber)
Application
Wood Building Systems
Author
Pei, Shiling
Stogdill, Jake
Glass, Samuel V.
Zelinka, Samuel
Kordziel, Steven
Tabares-Velasco, Paulo Cesar
Organization
Colorado School of Mines
Forest Products Laboratory
Publisher
ASCE
Year of Publication
2021
Format
Journal Article
Material
CLT (Cross-Laminated Timber)
Application
Wood Building Systems
Topic
Moisture
Keywords
Moisture Monitoring
Building Enclosure
Building Envelope
Research Status
Complete
Series
Journal of Architectural Engineering
Notes
Technical Note
Summary
In 2017, a moisture monitoring study was initiated on an eight-story, mass timber building located in Portland, Oregon. A detailed description of the monitoring program and initial monitoring results from the first year of the program were published previously. It was discovered that by the end of Year 1, some of the mass timber components had not dried below 19% moisture content (MC). This technical note is a follow-up to the original paper to examine how the building changed over its first 3 years after construction. All of the locations monitored over 3 years have reached stable moisture contents between 10% and 15%, which are acceptable for building functionality and performance. The main conclusion from this study is that mass timber buildings can naturally recover from construction wetting provided that such buildings are properly enclosed and further moisture intrusion is prevented.
Online Access
Free
Resource Link
Less detail

Hygrothermal Characterization and Modeling of Cross-Laminated Timber in the Building Envelope

https://research.thinkwood.com/en/permalink/catalogue2562
Year of Publication
2020
Topic
Moisture
Design and Systems
Material
CLT (Cross-Laminated Timber)
Application
Building Envelope
Author
Kordziel, Steven
Glass, Samuel
Boardman, Charles
Munson, Robert
Zelinka, Samuel
Pei, Shiling
Tabares-Velasco, Paulo
Organization
Forest Products Laboratory
Year of Publication
2020
Format
Journal Article
Material
CLT (Cross-Laminated Timber)
Application
Building Envelope
Topic
Moisture
Design and Systems
Keywords
Building Envelope
Hygrothermal Modeling
Moisture Performance
Water Uptake
Hygric Redistribution
Research Status
Complete
Series
Building and Environment
Summary
Cross-laminated timber (CLT) is a type of mass timber panel used in floor, wall, and roof assemblies. An important consideration in design and construction of timber buildings is moisture durability. This study characterized the hygrothermal performance of CLT panels with laboratory measurements at multiple scales, field measurements, and modeling. The CLT panels consisted of five layers, four with spruce-pine-fir lumber and one with Douglas-fir lumber. Laboratory characterization involved measurements on small specimens that included material from only one or two layers and large specimens that included all five layers of the CLT panel. Water absorption was measured with panel specimens partially immersed in water, and a new method was developed where panels were exposed to ponded water on the top surface. This configuration gave a higher rate of water uptake than the partial immersion test. The rate of drying was much slower when the wetted surface was covered with an impermeable membrane. Measured hygrothermal properties were implemented in a one-dimensional transient hygrothermal model. Simulation of water uptake indicated that vapor diffusion had a significant contribution in parallel with liquid transport. A simple approximation for liquid transport coefficients, with identical coefficients for suction and redistribution, was adequate for simulating panel-scale wetting and drying. Finally, hygrothermal simulation of a CLT roof assembly that had been monitored in a companion field study showed agreement in most cases within the sensor uncertainty. Although the hygrothermal properties are particular to the wood species and CLT panels investigated here, the modeling approach is broadly applicable.
Online Access
Free
Resource Link
Less detail

Seismic performance factors for cross-laminated timber shear wall systems in the United States

https://research.thinkwood.com/en/permalink/catalogue3224
Year of Publication
2020
Topic
Seismic
Material
CLT (Cross-Laminated Timber)
Application
Shear Walls
Author
Lindt, John W. van de
Amini, M. Omar
Rammer, Douglas
Line, Philip
Pei, Shiling
Popovski, Marjan
Organization
Forest Products Laboratory
Publisher
ASCE
Year of Publication
2020
Format
Journal Article
Material
CLT (Cross-Laminated Timber)
Application
Shear Walls
Topic
Seismic
Keywords
FEMA P695
Research Status
Complete
Series
Journal of Structural Engineering
Summary
Seismic force resisting systems based on cross-laminated timber (CLT) shear walls have garnered considerable attention for in mid-rise construction around the world. The purpose of this study was to determine seismic performance factors for CLT shear wall systems in platform type construction. These factors, namely, the response modification factors, R, overstrength factor, Oo and deflection amplification factor, Cd, have been developed in this study for CLT walls and proposed for inclusion in ASCE 7. The study follows the FEMA P695 methodology that incorporates testing, evaluating a design methodology, defining the design space representative of typical construction, and comprehensive performance evaluation. The testing phase of the project consisted of connector testing and CLT shear wall testing, all with nonproprietary generic connectors to facilitate building code recognition. The design methodology and archetype development process are also discussed in this paper. A total of nine index buildings were developed from which 72 archetypes were extracted for this study. The archetypes were designed based on the design methodology and assessed with nonlinear pushover analysis and incremental dynamic analysis. Based on the required collapse margin, an R factor of 3 is proposed for CLT shear wall systems with 2:1 or mixed aspect ratio panels up to 4:1, and an R factor of 4 is proposed for CLT shear wall systems made up of only 4:1 aspect ratio panels.
Online Access
Free
Resource Link
Less detail

Structure moisture monitoring of an 8-story mass timber building in the Pacific Northwest

https://research.thinkwood.com/en/permalink/catalogue3244
Year of Publication
2019
Topic
Moisture
Material
CLT (Cross-Laminated Timber)
Application
Wood Building Systems
Author
Kordziel, Steven
Pei, Shiling
Glass, Samuel V.
Zelinka, Samuel
Tabares-Velasco, Paulo Cesar
Organization
Colorado School of Mines
Forest Products Laboratory
Publisher
ASCE
Year of Publication
2019
Format
Journal Article
Material
CLT (Cross-Laminated Timber)
Application
Wood Building Systems
Topic
Moisture
Keywords
Moisture Monitoring
Building Enclosure
Building Envelope
Research Status
Complete
Series
Journal of Architectural Engineering
Summary
The use of mass timber structural products (such as glulam and cross-laminated timber) in commercial buildings is increasing in prevalence around the world. Whereas moisture management during the construction process is important for all building types, it is especially important for buildings with wood structural members. The exposure of mass timber products to the environment during construction can result in wetting of the wood, and mass timber products may take longer to dry than lightweight wood-frame construction. To better understand the moisture conditions to which mass timber framing systems are subjected, a monitoring study was initiated on an 8-story, mass timber framed building located in Portland, Oregon. The study used wireless sensors to continuously monitor moisture content in the wood components over the transportation, construction, and operation of the building for a 1-year period. This study witnessed record levels of rainfall during construction, representing very adverse conditions for mass timber projects. However, the data showed consistent drying of all mass timber products after the completion of the building, with glulam and light framed wood products drying at a faster rate than cross-laminated timber. The method to install the instrumentation was also examined carefully for potential bias, which provided valuable lessons to future on-site moisture monitoring projects.
Online Access
Free
Resource Link
Less detail

Experimental seismic behavior of a two-story CLT platform building

https://research.thinkwood.com/en/permalink/catalogue3227
Year of Publication
2019
Topic
Seismic
Material
CLT (Cross-Laminated Timber)
Application
Shear Walls
Author
Lindt, John W. van de
Furley, Jace
Amini, M. Omar
Pei, Shiling
Tamagnone, Gabriele
Barbosa, Andre R.
Rammer, Doug
Line, Philip
Fragiacomo, Massimo
Popovski, Marjan
Organization
Forest Products Laboratory
Publisher
Elsevier
Year of Publication
2019
Format
Journal Article
Material
CLT (Cross-Laminated Timber)
Application
Shear Walls
Topic
Seismic
Keywords
Shake Table Test
Earthquake
Research Status
Complete
Series
Engineering Structures
Summary
Cross-laminated timber (CLT) manufacturing and construction has been steadily growing since its inception in Europe in the 1990s. In the US, the growth of the CLT adoption is inhibited by the lack of codified design provisions for CLT in high seismic regions. This led to a multi-year study conducted by Colorado State University to investigate suitable seismic design parameters of CLT shear wall systems. This paper presents the results from a series of shake-table tests featuring a full-scale two-story mass-timber building utilizing CLT Seismic Force Resisting Systems (SFRS). The building was designed using an R- factor equal to 4.0 under the equivalent lateral force procedure specifications of the ASCE 7-16 Standard. The test program included three phases with different wall configurations, reflecting different wall panel aspect ratios and the existence of transverse CLT walls. Test results indicate that the code-level life safety objective was achieved in all test configurations. The addition of transverse walls did not affect the ability of the panels to rock, and improved the performance of the building structural system.
Online Access
Free
Resource Link
Less detail

Moisture Monitoring and Modeling of Mass-Timber Building Systems

https://research.thinkwood.com/en/permalink/catalogue1833
Year of Publication
2018
Topic
Moisture
Material
CLT (Cross-Laminated Timber)
Author
Kordziel, Steven
Glass, Samuel
Pei, Shiling
Zelinka, Samuel
Tabares-Velasco, Paulo
Organization
Forest Products Laboratory
Year of Publication
2018
Format
Conference Paper
Material
CLT (Cross-Laminated Timber)
Topic
Moisture
Keywords
Moisture Monitoring
Hygrothermal Properties
High-Rise
Conference
World Conference on Timber Engineering
Research Status
Complete
Notes
August 20-23,2018. Seoul, Republic of Korea
Summary
The use of mass timber structural products in tall building applications (6–20 stories) is becoming more common around the world including North America. A potential concern is the environmental wetting of mass timber products during construction because such products may dry out more slowly than light-frame structural lumber, and wood, as an organic material, is susceptible to deterioration at elevated moisture contents. In order to better understand the moisture conditions present in high rise timber constructions, a long-term moisture monitoring program was implemented on an eight story, mixed-use, mass timber framed building in Portland, Oregon. The building was monitored with an array of moisture meters to track moisture content throughout the building’s construction and operation. This paper presents data covering a period just over one year starting from the manufacture of crosslaminated timber (CLT) panels. Hygrothermal properties of CLT samples of the same type used in the building were measured in the laboratory, and wetting and drying experiments on representative CLT samples were conducted. Simulated moisture contents using a one-dimensional hygrothermal model compared reasonably well with laboratory experiments and building site measurements.
Online Access
Free
Resource Link
Less detail

38 records – page 1 of 4.