To evaluate the mechanical performance of the cross laminated timber (CLT) as the structural board materials using domestic species, the delamination test and the transverse bending test were conducted. The CLT used in the tests consisted of 3 layers of laminated timber made of Japanese larch and Korean red pine. The combinations for lamination were then divided on species of layer and grades of laminae. In the bending test, the loading directions were shown to be parallel and perpendicular to width direction of specimens, which is considered as the applicable direction in wooden building. The result of test showed that the bending strength of larix CLT was higher than that of pine CLT in combination of single species. In case of combination of mixed species, the bending properties CLT using larix major layer was higher than those of pine surface layer. It means that the surface layer has a more influence on bending properties of CLT, than the core layer does.
The goal of this study was to analyze the bearing properties of the differently oriented glulam using digital image correlation (DIC). Six differently oriented specimens associated with three anatomical directions including longitudinal (L), radial (R), and tangential (T), and 12-mm drift pins were used to analyze the bearing properties, including yield load and bearing strength. The highest bearing strength of 22.57 MPa from RL was found, whereas the lowest bearing strength of 6.47 MPa from LR was found. Different strain distributions were observed from the differently oriented bearing specimens using DIC. Different failure ratios of the differently oriented specimens were highly related to the strain distributions. Although the bearing properties were found to be different between the differently oriented specimens, for the connection design aspect, the bearing properties of glulam could be grouped as RL and TL specimens, RT and TR specimens, and LR and LT specimens.
The effect of knot clusters on the bending properties of Korean pine (Pinus koraiensis) cross-laminated timber (CLT) was analyzed to increase the utilization of low-quality lumber. The laminae used to manufacture the CLT were classified into five groups, four major layer groups, and one minor layer group, by mechanical grade and knot area ratio (KAR) of the lamina. Out-of-plane bending tests were conducted on CLT made from each layer group. The modulus of elasticity (MOE) of the manufactured CLT was closely correlated with the MOE of each individual major axis lamina. In the case of the modulus of rupture (MOR) of the CLT, the KAR of the laminae used in the major axis layer was more significantly affected than the MOE. The main finding is that the lower fifth percentile MOR value of the CLT specimens with large knots (KAR > 0.5) was higher than the acceptable reference value of E3 grade CLT (ANSI/APA PRG 320) made from a similar lamina grade. Therefore, the use of low-quality lumber to manufacture CLT can be expanded under the condition of limitation of the greater KAR.
In this study, the lateral resistances of mass timber shear walls were investigated for seismic design. The lateral resistances were predicted by kinematic models with mechanical properties of connectors, and compared with experimental data. Four out of 7 shear wall specimens consisted of a single Ply-lam panel and withdrawal-type connectors. Three out of 7 shear wall specimens consisted of two panels made by dividing a single panel in half. The divided panels were connected by 2 or 4 connectors like a single panel before being divided. The applied vertical load was 0, 24, or 120 kN, and the number of connectors for connecting the Ply-lam wall-to-floor was 2 or 4. As a result, the tested data were 6.3 to 52.7% higher than the predicted value by kinematic models, and it means that the lateral resistance can be designed by the behavior of the connector, and the prediction will be safe. The effects of wall-to-wall connectors, wall-to-floor connectors and vertical loads on the shear wall were analyzed with the experimental data.
In this study, the bending performance of a separable cross-laminated timber (CLT)–concrete composite slab for reducing environmental impact was investigated. The slab has consisted of CLT and eco–concrete, and round-notch shape shear connectors resist the shear force between the CLT and eco-concrete. The eco–concrete was composed of a high-sulfated calcium silicate (HSCS) cement, which ensures low energy consumption in the production process. The bending stiffness and load-carrying capacities of the slab were theoretically predicted based on the shear properties of the notch connectors and validated with an experimental test. The shear properties of two types of notch shear connectors (Ø100 mm and Ø200 mm) were measured by planar shear tests. As a result, the stochastically predicted bending stiffness of the slab (with Ø100 mm shear connector) was 0.364 × 1012 N mm2, which was almost similar to test data. The load-carrying capacities of the slab were governed by the shear failure of the notch connectors, and the lower fifth percentile point estimate (5% PE) was 21.9 kN, which was 7.9% higher than the prediction (20.2 kN). In a parameter study, the effect of notch diameter for the CLT-concrete slab span was analyzed depending on the applied loads, and the maximum spans of the slab with Ø100 mm notch or Ø200 mm notch were not significantly different.
A cross-laminated timber (CLT) wall plays a role of resisting shear stress induced by lateral forces as well as resisting vertical load. Due to the press size, CLT panels have a limitation in its size. To minimize the initial investment, some glulam manufactures wanted to make a shear wall element with small-size CLT panels and panel-to-panel...
The aim of this study was to predict the withdrawal resistance of a screw in hybrid cross-laminated timber (CLT) composed of two types of lamina layers. A theoretical model to predict the withdrawal resistance was developed from the shear mechanism between a screw and the layers in hybrid CLT. The parameters for the developed model were the withdrawal stiffness and strength that occurs when a screw is withdrawn, and the penetration depth of a screw in layers of a wood material. The prediction model was validated with an experimental test. Screws with two different diameters and lengths (Ø6.5 × 65 mm and Ø8.0 × 100 mm) were inserted in a panel composed of solid wood and plywood layers, and the withdrawal resistances of the screws were evaluated. At least 30 specimens for each group were tested to derive the lower 5th percentile values. As a result, the developed model predictions were 86–88% of the lower 5th percentile values of hybrid CLT from the properties of the lamina layer. This shows that the withdrawal resistance of hybrid CLT can be designed from the properties of its layer.
A cross-laminated timber (CLT) wall plays the role of resisting shear stress induced by lateral forces as well as vertical load. Due to the press size, CLT panels have a limitation in size. To minimize the initial investment, some glulam manufactures wanted to make a shear wall element with small-size CLT panels and panel-to-panel connections and wanted to know whether the shear wall would have equivalent shear performance with the wall made of a single CLT panel. In this study, this was investigated by experiments and kinematic model analysis. Two shear walls made of small CLT panels were tested. The model showed a good agreement with test results in the envelope curve. Even though the shear walls were made of small panels, the global peak load did not decrease significantly compared with the wall made of a single CLT panel, but the global displacement showed a large increase. From this analysis, it was concluded that the shear wall can be designed with small CLT panels, but displacement should be designed carefully.
The aim of this study was to develop a stochastic model for predicting the bending strength distribution of glued-laminated timber (GLT). The developed model required the localized modulus of elasticity (MOE) and tensile strengths of laminae as input properties. The tensile strength was estimated using a regression model based on the localized MOEs and knot area ratios (KAR) which were experimentally measured for lamina grades samples. The localized MOE was obtained using a machine stress-rated grader, and the localized KAR was determined using an image-processing system. The bending strength distributions in four types of GLTs were simulated using the developed GLT beam model; these four types included: (1) GLT beams without finger joints; (2) GLT beams with finger joints; (3) GLT beams with different lamina sizes; and (4) GLT beams with different combinations of lamina grades. The simulated bending strength distributions were compared with actual test data of 2.4 and 4.8 m-long GLTs. The Kolmogorov–Smirnov goodness-of-fit tests showed that all of the simulated bending strength distributions agreed well with the test data. Especially, good agreement was shown in the fifth percentile point estimate of bending strength with the difference of approximately 1%.