Skip header and navigation

6 records – page 1 of 1.

Bending Properties of Cross Laminated Timber with Layer Arrangement Using Different Species

https://research.thinkwood.com/en/permalink/catalogue1599
Year of Publication
2016
Topic
Mechanical Properties
Material
CLT (Cross-Laminated Timber)
Author
Park, Sun-Hyang
Kim, Keon-Ho
Lee, Sang-Joon
Pang, Sung-Jun
Year of Publication
2016
Country of Publication
Austria
Format
Conference Paper
Material
CLT (Cross-Laminated Timber)
Topic
Mechanical Properties
Keywords
Delamination Test
Bending Test
Japanese Larch
Korean Red Pine
Shear Strength
MOE
Language
English
Conference
World Conference on Timber Engineering
Research Status
Complete
Notes
August 22-25, 2016, Vienna, Austria p. 1931-1938
Summary
To evaluate the mechanical performance of the cross laminated timber (CLT) as the structural board materials using domestic species, the delamination test and the transverse bending test were conducted. The CLT used in the tests consisted of 3 layers of laminated timber made of Japanese larch and Korean red pine. The combinations for lamination were then divided on species of layer and grades of laminae. In the bending test, the loading directions were shown to be parallel and perpendicular to width direction of specimens, which is considered as the applicable direction in wooden building. The result of test showed that the bending strength of larix CLT was higher than that of pine CLT in combination of single species. In case of combination of mixed species, the bending properties CLT using larix major layer was higher than those of pine surface layer. It means that the surface layer has a more influence on bending properties of CLT, than the core layer does.
Online Access
Free
Resource Link
Less detail

Comparisons of Bearing Properties for Various Oriented Glulam Using Digital Image Correlation

https://research.thinkwood.com/en/permalink/catalogue1459
Year of Publication
2018
Topic
Mechanical Properties
Material
Glulam (Glue-Laminated Timber)
Author
Young Jeong, Gi
Kong, Jin Hyuk
Lee, Sang-Joon
Pang, Sung-Jun
Publisher
Springer Japan
Year of Publication
2018
Country of Publication
Japan
Format
Journal Article
Material
Glulam (Glue-Laminated Timber)
Topic
Mechanical Properties
Keywords
Digital Image Correlation
Orientation
Bearing Strength
Yield Load
Strain Distribution
Failure
Language
English
Research Status
Complete
Series
Journal of Wood Science
ISSN
1611-4663
Summary
The goal of this study was to analyze the bearing properties of the differently oriented glulam using digital image correlation (DIC). Six differently oriented specimens associated with three anatomical directions including longitudinal (L), radial (R), and tangential (T), and 12-mm drift pins were used to analyze the bearing properties, including yield load and bearing strength. The highest bearing strength of 22.57 MPa from RL was found, whereas the lowest bearing strength of 6.47 MPa from LR was found. Different strain distributions were observed from the differently oriented bearing specimens using DIC. Different failure ratios of the differently oriented specimens were highly related to the strain distributions. Although the bearing properties were found to be different between the differently oriented specimens, for the connection design aspect, the bearing properties of glulam could be grouped as RL and TL specimens, RT and TR specimens, and LR and LT specimens.
Online Access
Free
Resource Link
Less detail

Prediction of Shear Performance on Cross Laminated Timber Wall with Wall to Wall Connections

https://research.thinkwood.com/en/permalink/catalogue1781
Year of Publication
2016
Topic
Mechanical Properties
Material
CLT (Cross-Laminated Timber)
Application
Shear Walls
Author
Oh, Jung-Kwon
Hong, Jung-Pyo
Kim, Chul-Ki
Pang, Sung-Jun
Lee, Hyeon-Jeong
Jang, Sung-Il
Park, Moon-Jae
Lee, Jun-Jae
Year of Publication
2016
Country of Publication
Austria
Format
Conference Paper
Material
CLT (Cross-Laminated Timber)
Application
Shear Walls
Topic
Mechanical Properties
Keywords
Shear Performance
Failure Mode
Displacement
Peak Load
Model
Language
English
Conference
World Conference on Timber Engineering
Research Status
Complete
Notes
August 22-25, 2016, Vienna, Austria p. 5503-5510
Summary
A cross-laminated timber (CLT) wall plays a role of resisting shear stress induced by lateral forces as well as resisting vertical load. Due to the press size, CLT panels have a limitation in its size. To minimize the initial investment, some glulam manufactures wanted to make a shear wall element with small-size CLT panels and panel-to-panel...
Online Access
Free
Resource Link
Less detail

Prediction of Withdrawal Resistance for a Screw in Hybrid Cross-Laminated Timber

https://research.thinkwood.com/en/permalink/catalogue2687
Year of Publication
2020
Topic
Connections
Mechanical Properties
Material
CLT (Cross-Laminated Timber)
Author
Pang, Sung-Jun
Ahn, Kyung-Sun
Kang, Seog Goo
Oh, Jung-Kwon
Publisher
SpringerOpen
Year of Publication
2020
Format
Journal Article
Material
CLT (Cross-Laminated Timber)
Topic
Connections
Mechanical Properties
Keywords
Self-Tapping Screws
Withdrawal Resistance
Screw
Withdrawal Stiffness
Withdrawal Strength
Connections
Language
English
Research Status
Complete
Series
Journal of Wood Science
Summary
The aim of this study was to predict the withdrawal resistance of a screw in hybrid cross-laminated timber (CLT) composed of two types of lamina layers. A theoretical model to predict the withdrawal resistance was developed from the shear mechanism between a screw and the layers in hybrid CLT. The parameters for the developed model were the withdrawal stiffness and strength that occurs when a screw is withdrawn, and the penetration depth of a screw in layers of a wood material. The prediction model was validated with an experimental test. Screws with two different diameters and lengths (Ø6.5 × 65 mm and Ø8.0 × 100 mm) were inserted in a panel composed of solid wood and plywood layers, and the withdrawal resistances of the screws were evaluated. At least 30 specimens for each group were tested to derive the lower 5th percentile values. As a result, the developed model predictions were 86–88% of the lower 5th percentile values of hybrid CLT from the properties of the lamina layer. This shows that the withdrawal resistance of hybrid CLT can be designed from the properties of its layer.
Online Access
Free
Resource Link
Less detail

Shear Behavior of Cross-Laminated Timber Wall Consisting of Small Panels

https://research.thinkwood.com/en/permalink/catalogue1411
Year of Publication
2017
Topic
Mechanical Properties
Material
CLT (Cross-Laminated Timber)
Application
Shear Walls
Author
Oh, Jung-Kwon
Hong, Jung-Pyo
Kim, Chul-Ki
Pang, Sung-Jun
Lee, Sang-Joon
Lee, Jun-Jae
Publisher
Springer Japan
Year of Publication
2017
Country of Publication
Japan
Format
Journal Article
Material
CLT (Cross-Laminated Timber)
Application
Shear Walls
Topic
Mechanical Properties
Keywords
Kinematic Model
Peak Load
Displacement
Panel-to-Panel
Language
English
Research Status
Complete
Series
Journal of Wood Science
Summary
A cross-laminated timber (CLT) wall plays the role of resisting shear stress induced by lateral forces as well as vertical load. Due to the press size, CLT panels have a limitation in size. To minimize the initial investment, some glulam manufactures wanted to make a shear wall element with small-size CLT panels and panel-to-panel connections and wanted to know whether the shear wall would have equivalent shear performance with the wall made of a single CLT panel. In this study, this was investigated by experiments and kinematic model analysis. Two shear walls made of small CLT panels were tested. The model showed a good agreement with test results in the envelope curve. Even though the shear walls were made of small panels, the global peak load did not decrease significantly compared with the wall made of a single CLT panel, but the global displacement showed a large increase. From this analysis, it was concluded that the shear wall can be designed with small CLT panels, but displacement should be designed carefully.
Online Access
Free
Resource Link
Less detail

Stochastic Model for Predicting the Bending Strength of Glued-Laminated Timber Based on the Knot Area Ratio and Localized MOE in Lamina

https://research.thinkwood.com/en/permalink/catalogue1379
Year of Publication
2018
Topic
Mechanical Properties
Material
Glulam (Glue-Laminated Timber)
Application
Beams
Author
Pang, Sung-Jun
Oh, Jung-Kwon
Hong, Jung-Pyo
Lee, Sang-Joon
Lee, Jun-Jae
Publisher
Springer Japan
Year of Publication
2018
Country of Publication
Japan
Format
Journal Article
Material
Glulam (Glue-Laminated Timber)
Application
Beams
Topic
Mechanical Properties
Keywords
Stochastic Model
Bending Strength
Modulus of Elasticity
Tensile Strength
Knot Area Ratios
Language
English
Research Status
Complete
Series
Journal of Wood Science
ISSN
1611-4663
Summary
The aim of this study was to develop a stochastic model for predicting the bending strength distribution of glued-laminated timber (GLT). The developed model required the localized modulus of elasticity (MOE) and tensile strengths of laminae as input properties. The tensile strength was estimated using a regression model based on the localized MOEs and knot area ratios (KAR) which were experimentally measured for lamina grades samples. The localized MOE was obtained using a machine stress-rated grader, and the localized KAR was determined using an image-processing system. The bending strength distributions in four types of GLTs were simulated using the developed GLT beam model; these four types included: (1) GLT beams without finger joints; (2) GLT beams with finger joints; (3) GLT beams with different lamina sizes; and (4) GLT beams with different combinations of lamina grades. The simulated bending strength distributions were compared with actual test data of 2.4 and 4.8 m-long GLTs. The Kolmogorov–Smirnov goodness-of-fit tests showed that all of the simulated bending strength distributions agreed well with the test data. Especially, good agreement was shown in the fifth percentile point estimate of bending strength with the difference of approximately 1%.
Online Access
Free
Resource Link
Less detail

6 records – page 1 of 1.