Skip header and navigation

3 records – page 1 of 1.

Cost Factor Analysis for Timber–Concrete Composite with a Lightweight Plywood Rib Floor Panel

https://research.thinkwood.com/en/permalink/catalogue3100
Year of Publication
2022
Topic
Cost
Material
Timber-Concrete Composite
Application
Floors
Author
Buka-Vaivade, Karina
Serdjuks, Dmitrijs
Pakrastins, Leonids
Organization
Riga Technical University
Publisher
MDPI
Year of Publication
2022
Format
Journal Article
Material
Timber-Concrete Composite
Application
Floors
Topic
Cost
Keywords
Adhesive Connection
Plywood Rib Panel
Floor Vibrations
Rigid Connection
Fibre Reinforced Concrete
Research Status
Complete
Series
Buildings
Summary
With the growing importance of the principle of sustainability, there is an increasing interest in the use of timber–concrete composite for floors, especially for medium and large span buildings. Timber–concrete composite combines the better properties of both materials and reduces their disadvantages. The most common choice is to use a cross-laminated timber panel as a base for a timber–concrete composite. But a timber–concrete composite solution with plywood rib panels with an adhesive connection between the timber base and fibre reinforced concrete layer is offered as the more cost-effective constructive solution. An algorithm for determining the rational parameters of the panel cross-section has been developed. The software was written based on the proposed algorithm to compare timber–concrete composite panels with cross-laminated timber and plywood rib panel bases. The developed algorithm includes recommendations of forthcoming Eurocode 5 for timber–concrete composite design and an innovative approach to vibration calculations. The obtained data conclude that the proposed structural solution has up to 73% lower cost and up to 71% smaller self-weight. Thus, the proposed timber–concrete composite construction can meet the needs of society for cost-effective and sustainable innovative floor solutions.
Online Access
Free
Resource Link
Less detail

Design Methods of Elements from Cross-Laminated Timber Subjected to Flexure

https://research.thinkwood.com/en/permalink/catalogue189
Year of Publication
2015
Topic
Design and Systems
Mechanical Properties
Material
CLT (Cross-Laminated Timber)
Author
Vilguts, Aivars
Serdjuks, Dmitrijs
Pakrastins, Leonids
Publisher
ScienceDirect
Year of Publication
2015
Format
Journal Article
Material
CLT (Cross-Laminated Timber)
Topic
Design and Systems
Mechanical Properties
Keywords
Finite Element Method (FEM)
Static Loading Test
Stress
Research Status
Complete
Series
Procedia Engineering
Summary
Design methods of cross-laminated timber elements subjected to bending is considered. The methods are based on LVS EN 1995–1–1. The presented methods were checked by the experiment and analytically. Two cross-laminated timber plates with the total thickness of 95 mm were tested under action of static load. The considered cross-laminated timber plates were analysed by FEM method, which is based on the using of computational program ANSYSv14. The comparison of stresses acting in the edge fibres of the plate and the maximum vertical displacements shows that the considered methods can be used for engineering calculations so as the difference between the experimentally and analytically obtained results does not exceed 20%.
Online Access
Free
Resource Link
Less detail

Experimental Verification of Design Procedure for Elements from Cross-Laminated Timber

https://research.thinkwood.com/en/permalink/catalogue1353
Year of Publication
2017
Topic
Mechanical Properties
Design and Systems
Material
CLT (Cross-Laminated Timber)
Author
Buka-Vaivade, Karina
Serdjuks, Dmitrijs
Goremikins, Vadims
Vilguts, Aivars
Pakrastins, Leonids
Publisher
ScienceDirect
Year of Publication
2017
Format
Journal Article
Material
CLT (Cross-Laminated Timber)
Topic
Mechanical Properties
Design and Systems
Keywords
Finite Element Model
Static Load
Transformed Section Method
Research Status
Complete
Series
Procedia Engineering
Summary
Cross-laminated timber is widely used for load-bearing walls and panels of multi-storey timber buildings as well as for decking structure of pedestrian and road bridges. Design procedure for elements from cross-laminated timber was considered and validated by the experiment and FEM. The design procedure is based on the transformed section method. Eight cross-laminated timber panels with span equal to 1.8 m were experimentally checked under the action of static load. The difference between the experimentally and analytically obtained results is within the limits from 3.3 up to 20%.
Online Access
Free
Resource Link
Less detail