Skip header and navigation

28 records – page 1 of 3.

Behavior of Cross-Laminated Timber Diaphragm Panel-to-Panel Connections with Self-Tapping Screws

https://research.thinkwood.com/en/permalink/catalogue1422
Year of Publication
2017
Topic
Seismic
Material
CLT (Cross-Laminated Timber)
Application
Wood Building Systems
Author
Sullivan, Kyle
Organization
Oregon State University
Year of Publication
2017
Country of Publication
United States
Format
Thesis
Material
CLT (Cross-Laminated Timber)
Application
Wood Building Systems
Topic
Seismic
Keywords
Lateral Load Resisting System
Monotonic Tests
Cyclic Tests
Strength
Stiffness
Self-Tapping Screws
International Building Code
Language
English
Research Status
Complete
Summary
The goal of this project is to contribute to the development of design values for cross-laminated timber (CLT) diaphragms in the seismic load-resisting system for buildings. Monotonic and cyclic tests to determine strength and stiffness characteristics of 2.44 m (8 ft) long shear connections with common self-tapping screws were performed. Understanding and quantifying the behavior of these shear connections will aid in developing design provisions in the National Design Specification for Wood Construction and the International Building Code so structural engineers can use CLT more confidently in lateral force-resisting systems and extend the heights of wood buildings. Experimental strength-to-design strength ratios were in the range of 2.1 to 8.7. In the ASCE 41 acceptance criteria analysis, the m-factors for the Life Safety performance level in cyclic tests ranged from 1.6 to 1.8 for surface spline connections and from 0.9 to 1.7 for cyclic half-lap connections. The half-lap connections, where screws were installed in withdrawal, shear, shear, and withdrawal, performed exceptionally well with both high, linear-elastic, initial stiffness, and ductile, post-peak behavior.
Online Access
Free
Resource Link
Less detail

Cross-Laminated Timber Engineering: Improvement and Application

https://research.thinkwood.com/en/permalink/catalogue1366
Year of Publication
2014
Topic
Design and Systems
Seismic
Material
CLT (Cross-Laminated Timber)
Application
Wood Building Systems
Author
Kramer, Anthonie
Organization
Oregon State University
Year of Publication
2014
Country of Publication
United States
Format
Thesis
Material
CLT (Cross-Laminated Timber)
Application
Wood Building Systems
Topic
Design and Systems
Seismic
Keywords
Poplar
Energy Dissipation
Rocking Walls
Language
English
Research Status
Complete
Summary
The development of cross-laminated timber (CLT) panel technology has opened up new opportunities for wood in tall buildings. Several characteristics including seismic performance and speed of construction have raised interest among designers. As CLT gains acceptance in the industry, alternative structural solutions need to be investigated to improve performance of CLT as a building material. The first study presented is an assessment of the viability of hybrid poplar for use in CLT panels. Hybrid poplar is a low density species, which is not typically considered for structural applications. Low density species have the potential to improve the structural efficiency of CLT panels. The tests conducted are based on the qualification of panels outlined in the ANSI/APA PRG-320: Standard for Performance-Rated Cross-Laminated Timber to determine the structural viability of the CLT panels. The second study presented is an investigation of a new alternative energy dissipation solution to be used with cross-laminated timber rocking walls for seismic design. The energy dissipators are designed as a structural fuse which can be easily replaced after failure following a large seismic event. The results of this study give insight to alternative solutions for CLT to improve upon current applications.
Online Access
Free
Resource Link
Less detail

Cyclic Performance of Connections used in Hybrid Cross-Laminated Timber

https://research.thinkwood.com/en/permalink/catalogue1367
Year of Publication
2017
Topic
Connections
Design and Systems
Material
CLT (Cross-Laminated Timber)
Author
Mahdavifar, Vahid
Organization
Oregon State University
Year of Publication
2017
Country of Publication
United States
Format
Thesis
Material
CLT (Cross-Laminated Timber)
Topic
Connections
Design and Systems
Keywords
North American Market
Density
Low-Grade
High-Grade
Fasteners
Economical
Language
English
Research Status
Complete
Summary
One of the recent additions to the panoply of engineered wood products is cross-laminated timber (CLT). CLT is a prefabricated, large-scale, solid wood panel that consists of multiple layers of lumbers stacked together, with each layer arranged perpendicular to the next layer, glued with structural grade adhesives, and pressed. The use of massive CLT panels in wood construction provides several advantages over the traditional wood frame systems, making it particularly attractive for tall wood building construction. These main advantages are satisfactory distribution of defects, adequate seismic performance, ability to carry large loads, improved strength and stiffness, adequate acceptable fire performance, acceptable acoustic performance, and improved pre-fabrication.It is expected that as the CLT market will continue to mature, more diversified grades and special CLT products will be introduced into the markets. One special CLT product developed in at Oregon State University has been designated as hybrid CLT. Hybrid CLT refers to CLT panels manufactured with layers of high- and low-grade and low-density species, which aims at improving the economic efficiency and sustainability of the CLT industry with focus on the North America market.One of the potential issues with hybrid CLT panel application is related to the unknown performance of the connection systems which are highly dependent on the density of the wood in which the fasteners embed. Most of the existing models that have been developed for estimation of the fasteners capacities in withdrawal and lateral loading scenarios are developed based on the assumption of uniform density profile across the layers to which fasteners penetrate. In a hybrid CLT panel, there is a possibility of a variation in density profile along the panel thickness so that the fasteners can be driven into wood of different densities and driven in directions parallel and perpendicular to grain. Because of the potential variation in density profile in the hybrid CLT, the connection system performance cannot be predicted using design models used for uniform density profile applications similar to the models in National Design Specification (NDS) [1]. Therefore, there is a need for evaluation of connections performance in hybrid layup.The main objective of this work is to characterize the performance of connection systems for hybrid CLT. This is achieved through testing and modeling of single fastener connections and then testing and modeling of the typical connection systems. So, the specific objectives are: (1) evaluate the single fasteners performance to account for density variation and compare the results to a proposed modified model, (2) perform an experimental program to test different connection systems with different hybrid CLT panel layups, (3) develop a numerical algorithm based on the use of meta-heuristics tools to fit the optimal parameters for constitutive models to match the experimental data for the connection systems, (4) obtain the optimal parameters for constitutive models of the connection systems tested.
Online Access
Free
Resource Link
Less detail

Design, Construction, and Maintenance of Mass Timber Post-Tensioned Shear Walls

https://research.thinkwood.com/en/permalink/catalogue2791
Topic
Design and Systems
Seismic
Serviceability
Material
CLT (Cross-Laminated Timber)
MPP (Mass Plywood Panel)
Application
Shear Walls
Organization
TallWood Design Institute
Oregon State University
Country of Publication
United States
Material
CLT (Cross-Laminated Timber)
MPP (Mass Plywood Panel)
Application
Shear Walls
Topic
Design and Systems
Seismic
Serviceability
Keywords
Post-Tensioned
Self-Centering
Shear Walls
Anchoring
Creep
Research Status
In Progress
Notes
Project contact is Mariapaola Riggio at Oregon State University
Summary
Earthquake engineers are focusing on performance-based design solutions that minimize damage, downtime, and dollars spent on repairs by designing buildings that have no residual drift or “leaning” after an event. The development of timber post-tensioned (PT), self-centering rocking shear walls addresses this high-performance demand. The system works by inserting unbonded steel rods or tendons into timber elements that are prestressed to provide a compressive force on the timber, which will pull the structure back into place after a strong horizontal action. But, because these systems are less than fifteen years old with just four real-world applications, little information is known regarding best practices and optimal methods for engineering design, construction and/or tensioning procedures, and long-term maintenance considerations. This project intends to contribute knowledge by testing both cross-laminated timber (CLT) and mass plywood panel (MPP) walls through testing of anchorage detailing, investigating tensioning procedures for construction, determining the contributions of creep on prestress loss over time, and comparing all laboratory test data to monitoring data from three of the four buildings in which this technology has been implemented, one of which is George W. Peavy Hall at Oregon State University. This will be accomplished by testing small- and full-scale specimens in the A.A. “Red” Emmerson Advanced Wood Products Laboratory, and small-scale specimens in an environmental chamber.
Resource Link
Less detail

Developing an Application for Mass Plywood Panels in Seismic and Energy Wall Retrofit

https://research.thinkwood.com/en/permalink/catalogue2568
Topic
Energy Performance
Seismic
Material
MPP (Mass Plywood Panel)
Application
Walls
Building Envelope
Organization
University of Oregon
Oregon State University
TallWood Design Institute
Country of Publication
United States
Material
MPP (Mass Plywood Panel)
Application
Walls
Building Envelope
Topic
Energy Performance
Seismic
Keywords
Retrofit
Assembly
Prefabrication
Research Status
In Progress
Notes
Project contact is Mark Fretz at the University of Oregon
Summary
University of Oregon and Oregon State University are collaborating through TallWood Design Institute (TDI) to upgrade aging, energy inefficient and seismically unprepared multifamily housing by developing a mass plywood (MPP) retrofit panel assembly that employs digital workflows and small diameter logs (down to 5") to create an economically viable energy/seismic retrofit model for the West Coast and beyond. The project has broad potential to support forested federal land management agencies and private forestry by proving a new market for small diameter logs.
Less detail

Effective Bonding Parameters for Hybrid Cross-Laminated Timber (CLT)

https://research.thinkwood.com/en/permalink/catalogue1368
Year of Publication
2017
Topic
Mechanical Properties
Connections
Material
CLT (Cross-Laminated Timber)
Author
Larkin, Blake
Organization
Oregon State University
Year of Publication
2017
Country of Publication
United States
Format
Thesis
Material
CLT (Cross-Laminated Timber)
Topic
Mechanical Properties
Connections
Keywords
North America
Low-Grade
Adhesives
Bond Integrity
Polyurethane
Phenol-Resorcinol Formaldehyde
Lodgepole Pine
Douglas-Fir
Hemlock
Manufacturing
Language
English
Research Status
Complete
Summary
Cross-laminated timber (CLT) is a massive engineered wood product made of orthogonally bonded layers of solid-sawn lumber, and is intended for roof, floor, or wall applications. Although it was developed in Europe in the early 90s, CLT is relatively new to North America. CLT products must be certified for structural use. First North American product standard stipulating test methods and qualification criteria for benchmark structural properties and adhesive bond integrity in structural CLT is ANSI/APA PRG320-2012. These methods and criteria have been adapted from existing laminated timber products (glulam), sometimes disregarding substantial differences between parallel laminates and CLT, in which layers are perpendicular to each other. From the point of view of long term sustainability of the CLT industry in North America, the critical questions are: 1. Is it possible to use low-grade timber harvested in the Pacific Northwest region in CLT products without compromising critical engineering parameters? Utilization of low- grade lumber, which is typically under-valued, in value-added engineered products should reduce the pressure on the high end structural lumber supply and may also provide a substantial outlet for lower-grade lumber timber species, including beetle-killed pine (BKP) harvested in the affected areas. 2. Can alternative adhesive systems, currently used in related engineered wood products and manufactured by domestic industry, be successfully used in CLT production? This is an important question, and is related to the fact that polyurethane (PUR) is the primary adhesive currently used by CLT manufacturing industry, and is supplied worldwide by a single Europe-based company. This adhesive is optimized for the species commonly used in CLT products to-date. ANSI/APA PRG320-2012 standard allows alternative adhesive types (PRF and EPI are specifically named), but to-date, only one alternative (MUF) has been used in commercial products. The objective of this project is to determine effective adhesive systems and bonding pressures for the hybrid cross-laminated timber (CLT) combinations. A secondary objective is to evaluate the testing methods prescribed in PRG 320-2012 for cross-laminated bond integrity. Integrity of hybrid CLT layups was evaluated on small specimens derived from CLT billets fabricated in-house using test procedures and qualification criteria specified in ANSI/APA PRG 320-2012 section 8.2.3. Test results were compared to prescribed qualification criteria. The Hybrid CLT combinations for this study include both structural grade lumber and low-grade lumber. For a reference species, lodgepole pine was selected, since it is a member of the US-SPF group closely related to the European species commonly used for CLT construction. The structural-grade, local species will be represented by Douglas-fir, while the low-grade species will be represented by low-grade lodgepole Pine, Douglas-fir, and Western Hemlock. The two adhesive systems investigated were 1) polyurethane-based PUR (currently the most common adhesive used by the CLT industry), which will serve as a reference system, and 2) phenol-resorcinol formaldehyde (PRF), which will represent a potential domestic alternative. PRF was chosen because it is a cold setting adhesive commonly used by the engineered wood products industry in North America; however, no CLT manufacturers utilize this adhesive system. The variables included species combinations (6), adhesive types (2), and clamping pressures (3), with repetition of 9 specimens per combination coming from at least three different CLT billets. The specimen’s bond integrity was assessed by the qualification panel requirements in PRG 320-2012 section 8.2. The qualification tests are block shear and cyclic delamination. A combination must pass both of the test requirements to qualify. The results of the study show that, of the 36 combinations, six failed the block shear test requirements and twenty-five failed the delamination test requirements. The 10 variable combinations that passed both requirements were DDL10F, DDL40F, DPL40F, PPH10F, PPH69F, PPH10U, PPH40U, PPL10U, PPL69U, and PHL69U. Initial inspection of test results show that no single variable that seems to make a significant impact on the bond integrity. It did reveal that no combinations with the use of Douglas-fir as a face material and PUR as an adhesive met the requirement, and only one combination with western hemlock as a core material met the requirements. It is evident that the delamination test was the major restriction on whether or not a combination passes the bond qualification. We believe that the adaption of a delamination test standard designed for layers with parallel grains makes the passing requirement too strict for an orthogonally bonded product. In conclusion, there were 10 combinations that passed both bond integrity test requirements. It was unclear whether the species and/or grade combination, adhesive system, or clamping pressure made the biggest impact on the bond integrity. Relative to the reference adhesive (PUR), and species combination (lodgepole pine), the hybrid panels performed similarly and showed that certain species and/or grade combinations could pass the qualification requirements for specific requirements. The knowledge gained by this screening study will allow further qualification testing of the passing combinations per PRG320-2012. This also has the potential to supply the CLT manufacturing community with greater flexibility of manufacturing techniques and materials, as well as offer value to underutilized lumber.
Online Access
Free
Resource Link
Less detail

Elevated Temperature Effects on the Shear Performance of a Cross-Laminated Timber (CLT) Wall-to-Floor Bracket Connection

https://research.thinkwood.com/en/permalink/catalogue2106
Year of Publication
2019
Topic
Fire
Connections
Mechanical Properties
Material
CLT (Cross-Laminated Timber)
Application
Walls
Floors

End-of-life Disassembly and Re-use of Mass Timber

https://research.thinkwood.com/en/permalink/catalogue2796
Topic
Design and Systems
Environmental Impact
Material
CLT (Cross-Laminated Timber)
Application
Wood Building Systems
Organization
TallWood Design Institute
Oregon State University
Country of Publication
United States
Material
CLT (Cross-Laminated Timber)
Application
Wood Building Systems
Topic
Design and Systems
Environmental Impact
Keywords
Deconstructable Connections
End of Life
Disassembly
Reuse
Mass Timber
Research Status
In Progress
Notes
Project contact is Lech Muszynski at Oregon State University
Summary
The aim of this project is to remove this vulnerability by thoughtful conceptualization of basic strategies for optimizing the design of mass timber buildings for successful post-use material recovery/reuse and end-of-life climate benefit. Research questions will include: 1. Is demolition of decommissioned mass timber buildings a viable end-of-life option at all? 2. Can deconstruction be conducted by following construction steps in reverse order? 3.What may be the extent of damage inflicted to the connection nests, connected edges and surfaces of MTP elements during a deconstruction? 4.Can original connection nests be safely reused in structures re-using deconstructed MTP elements? 5.What is the impact of techniques and technologies selected at the design, production, and construction stages on the EOL options and carbon cost of deconstruction, 6. What is the carbon impact of deconstruction on reuse or recycling of MTP elements? 7. Do the existing deconstruction companies in the Pacific northwest have capacity to process mass timber panels that could not be reused? 8. What is the carbon costs of transportation and repurposing/recycling of MTP elements for non-structural uses?
Resource Link
Less detail

Establishing New Markets for CLT - Lessons Learned

https://research.thinkwood.com/en/permalink/catalogue1427
Year of Publication
2017
Topic
Market and Adoption
Material
CLT (Cross-Laminated Timber)
Author
Schwarzmann, Gabriel
Organization
Oregon State University
Year of Publication
2017
Country of Publication
United States
Format
Thesis
Material
CLT (Cross-Laminated Timber)
Topic
Market and Adoption
Keywords
North American Market
Language
English
Research Status
Complete
Summary
CLT is becoming global. New countries and regions increasingly realize the potential of what can be done with CLT. As a result, new markets are forming and new companies are entering the industry. Every new region or country that opens its doors to CLT has its own challenges and opportunities. However, there is the unique opportunity to learn from the existing Original Market in Europe and the companies that have been successful there for many years. Especially the German-speaking alpine region was, and still is, the cradle of CLT innovation. Therefore, this research,using qualitative methods, analyzed market characteristics and business models of this region. Lessons learned over the years were identified such as the importance of high-level timber education, the role of designing for building services, hype versus reality with respect to tall wood buildings and how careful design processes are key to competitiveness of CLT buildings. Threats and challenges in the North American CLT market were also identified there. The combined findings give an enhanced understanding of how the implementation of CLT in North America, as an example of a new global market, can be fostered.
Online Access
Free
Resource Link
Less detail

Expanding Mass Timber and CLT Markets for High Termite Risk Applications

https://research.thinkwood.com/en/permalink/catalogue2790
Topic
Serviceability
Moisture
Material
CLT (Cross-Laminated Timber)
Application
Wood Building Systems
Organization
TallWood Design Institute
Oregon State University
Country of Publication
United States
Material
CLT (Cross-Laminated Timber)
Application
Wood Building Systems
Topic
Serviceability
Moisture
Keywords
Termites
Moisture
Treated Wood
Field Testing
Hawaii
Research Status
In Progress
Notes
Project contacts are Gerald Presley, Oregon State University, and Scott Noble, Kaiser+Path
Summary
The primary goal of this project is to enhance the durability of mass timber assemblies in high-moisture, high-termite risk regions. Only a few U.S. jurisdictions allow mass timber use by code adoption. Hawaii requires that all structural wood be treated to resist insects. Current topical or pressure treatments are allowed, but it is unclear how these treatments will perform in mass timber elements. Assembled cross-laminated timber (CLT) panels are too large to fit in pressure vessels. We will test the performance of individually treated wood members (lamella), assembled into CLT panels for compliance to structural requirements as well as resistance to termite attack in field trials. The resulting data will identify the most effective treatment options to protect CLT and other mass timber assemblies for use in Hawaii and similar regions with high termite exposure. The research implications will contribute to educating architects, engineers, builders and developers on modern timber construction in new regions.
Resource Link
Less detail

28 records – page 1 of 3.