Skip header and navigation

3 records – page 1 of 1.

Building Higher with Light-Weight Timber Structures: The Effect of Wind Induced Vibrations

https://research.thinkwood.com/en/permalink/catalogue89
Year of Publication
2015
Topic
Acoustics and Vibration
Wind
Material
CLT (Cross-Laminated Timber)
Light Frame (Lumber+Panels)
Glulam (Glue-Laminated Timber)
Application
Wood Building Systems
Author
Johansson, Marie
Linderholt, Andreas
Bolmsvik, Åsa
Jarnerö, Kirsi
Olsson, Jörgen
Reynolds, Thomas
Organization
Inter-noise
Year of Publication
2015
Country of Publication
United States
Format
Conference Paper
Material
CLT (Cross-Laminated Timber)
Light Frame (Lumber+Panels)
Glulam (Glue-Laminated Timber)
Application
Wood Building Systems
Topic
Acoustics and Vibration
Wind
Keywords
Mid-Rise
High-Rise
Vibration Properties
Language
English
Conference
Inter-noise 2015
Research Status
Complete
Notes
August 9-12, 2015, San Francisco, California, USA
Summary
During the last years the interest in multi-storey timber buildings has increased and several medium-to-high-rise buildings with light-weight timber structure have been designed and built. Examples of such are the 8-storey building Limnologen in Växjö, Sweden, the 9- storey Stadthaus in London, UK and being constructed at the moment, the 14-storey building Treet in Bergen, Norway. These are all light-weight and flexible structures which raise questions regarding the wind induced vibrations. For the building in Norway, the calculated vibration properties of the top floor are on the limit of being acceptable according to the ISO 101371 vibration criteria for human comfort. This paper will give a review of building systems for medium-to-high-rise timber buildings. Measured vibration properties for some medium-to-high-rise timber buildings will also be presented. These data have been used for calculating the peak acceleration values for two example buildings for comparison with the ISO standards. An analysis of the acceleration levels for a building with double the height has also been performed showing that designing for wind induced vibrations in higher timber buildings is going to be very important and that more research into this area is needed.
Online Access
Free
Resource Link
Less detail

Model Calibration of Wooden Structure Assemblies - Using EMA and FEA

https://research.thinkwood.com/en/permalink/catalogue638
Year of Publication
2014
Topic
Acoustics and Vibration
Material
LVL (Laminated Veneer Lumber)
Application
Wood Building Systems
Author
Bolmsvik, Åsa
Linderholt, Andreas
Olsson, Jörgen
Year of Publication
2014
Country of Publication
Canada
Format
Conference Paper
Material
LVL (Laminated Veneer Lumber)
Application
Wood Building Systems
Topic
Acoustics and Vibration
Keywords
Experimental Modal Analysis
Finite Element Model
Sound Transmission
Vibrational Tests
Language
English
Conference
World Conference on Timber Engineering
Research Status
Complete
Notes
August 10-14, 2014, Quebec City, Canada
Summary
To predict and, when needed to fulfil regularizations or other requirements, lower the impact sound transmission in light weight buildings prior to building, dynamically representative calculation models are needed. The material properties of commonly used building components have a documented spread in literature. Therefore, to validate the junction models, the dynamics of the actual assembly components have to be known. Here, the dynamic properties of a number of component candidates are measured using hammer excited vibrational tests. The spread of the properties of the components are hereby gained. Some of the components are selected to build up wooden assemblies which are evaluated first when they are screwed together and later when they are screwed and glued together. The focus is here on achieving representative finite element models of the junctions between the building parts composing the assemblies.
Online Access
Free
Resource Link
Less detail

Model Calibration of Wooden Strucuture Assemblies - Using EMA and FEA

https://research.thinkwood.com/en/permalink/catalogue1001
Year of Publication
2014
Topic
Acoustics and Vibration
Material
LVL (Laminated Veneer Lumber)
Application
Wood Building Systems
Author
Bolmsvik, Åsa
Linderholt, Andreas
Olsson, Jörgen
Year of Publication
2014
Country of Publication
Canada
Format
Conference Paper
Material
LVL (Laminated Veneer Lumber)
Application
Wood Building Systems
Topic
Acoustics and Vibration
Keywords
Finite Element Model
Experimental Modal Analysis
Impact Sound Transmission
Language
English
Conference
World Conference on Timber Engineering
Research Status
Complete
Notes
August 10-14, 2014, Quebec City, Canada
Summary
To predict and, when needed to fulfil regularizations or other requirements, lower the impact sound transmission in light weight buildings prior to building, dynamically representative calculation models are needed. The material properties of commonly used building components have a documented spread in literature. Therefore, to validate the junction models, the dynamics of the actual assembly components have to be known. Here, the dynamic properties of a number of component candidates are measured using hammer excited vibrational tests. The spread of the properties of the components are hereby gained. Some of the components are selected to build up wooden assemblies which are evaluated first when they are screwed together and later when they are screwed and glued together. The focus is here on achieving representative finite element models of the junctions between the building parts composing the assemblies.
Online Access
Free
Resource Link
Less detail