Skip header and navigation

6 records – page 1 of 1.

Damping in Timber Structures

https://research.thinkwood.com/en/permalink/catalogue106
Year of Publication
2012
Topic
Design and Systems
Material
Glulam (Glue-Laminated Timber)
Application
Wood Building Systems
Floors
Beams
Author
Labonnote, Nathalie
Organization
Norwegian University of Science and Technology
Year of Publication
2012
Country of Publication
Norway
Format
Thesis
Material
Glulam (Glue-Laminated Timber)
Application
Wood Building Systems
Floors
Beams
Topic
Design and Systems
Keywords
Damping
Model
Panels
Spruce
Testing
Vibrations
Language
English
Research Status
Complete
Summary
Key point to development of environmentally friendly timber structures, appropriate to urban ways of living, is the development of high-rise timber buildings. Comfort properties are nowadays one of the main limitations to tall timber buildings, and an enhanced knowledge on damping phenomena is therefore required, as well as improved prediction models for damping. The aim of this work has consequently been to estimate various damping quantities in timber structures. In particular, models have been derived for predicting material damping in timber members, beams or panels, or in more complex timber structures, such as floors. Material damping is defined as damping due to intrinsic material properties, and used to be referred to as internal friction. In addition, structural damping, defined as damping due to connections and friction in-between members, has been estimated for timber floors.
Online Access
Free
Resource Link
Less detail

Dynamic Testing and Numerical Modeling of Residential Building Modules

https://research.thinkwood.com/en/permalink/catalogue105
Year of Publication
2013
Topic
Design and Systems
Mechanical Properties
Material
Light Frame (Lumber+Panels)
Glulam (Glue-Laminated Timber)
Application
Wood Building Systems

Moisture Induced Stresses in Glulam: Effect of Cross Section Geometry and Screw Reinforcement

https://research.thinkwood.com/en/permalink/catalogue176
Year of Publication
2012
Topic
Mechanical Properties
Moisture
Material
Glulam (Glue-Laminated Timber)
Application
Beams
Author
Angst-Nicollier, Vanessa
Organization
Norwegian University of Science and Technology
Year of Publication
2012
Country of Publication
Norway
Format
Thesis
Material
Glulam (Glue-Laminated Timber)
Application
Beams
Topic
Mechanical Properties
Moisture
Keywords
Moisture Induced Stress
Mechanosorption
Numerical model
Tensile Strength
Tensile Stress
Load Bearing Capacity
Self-Tapping Screws
Climate
Language
English
Research Status
Complete
Summary
This thesis presents a state of the art on moisture induced stresses in glulam, complemented with own findings. These are covered in detail in the appended papers. The first objective was to find a suitable model to describe moisture induced stresses, in particular with respect to mechanosorption. A review of existing models led to the conclusion that the selection of correct material parameters is more critical to obtain reliable results than the formulation of the mechanosorption model. A series of laboratory tests was thus performed in order to determine the parameters required for the model and to experimentally measure moisture induced stresses in glulam subjected to one dimensional wetting/drying. Special attention was paid to using glulam from the same batch for all the experimental measurements in order to calibrate the numerical model reliably. The results of the experiments confirmed that moisture induced stresses are larger during wetting than during drying, and that the tensile stresses could clearly exceed the characteristic tensile strength perpendicular to grain.
Online Access
Free
Resource Link
Less detail

Numerical Models for Dynamic Properties of a 14 Storey Timber Building

https://research.thinkwood.com/en/permalink/catalogue274
Year of Publication
2012
Topic
Design and Systems
Connections
Material
Glulam (Glue-Laminated Timber)
Application
Wood Building Systems
Author
Utne, Ingunn
Organization
Norwegian University of Science and Technology
Year of Publication
2012
Country of Publication
Norway
Format
Thesis
Material
Glulam (Glue-Laminated Timber)
Application
Wood Building Systems
Topic
Design and Systems
Connections
Keywords
Dynamic Properties
Finite Element Model
Language
English
Research Status
Complete
Summary
The world tallest timber building with height of 45 meters, is planned for Bergen, Norway. In this master thesis the dynamic properties of the case building, as proposed by Sweco and Artec, are investigated. The proposed structural concept with a glulam frame and power-storeys, have never previously been built, and it is desirable to develop and understanding of the dynamic problems concerning this building. Previous work have shown problems with acceleration levels for tall timber building, mostly due to the material properties of timber. Timber has high flexibility and strength combined with low weight. The main aim of the work have been to build a 3D-model of the case building in a finite element program, where numerical methods can be used to find the dynamic properties of the building. The wind load and acceleration levels are investigated, and found to be reasonable compared to various criterions presented. The effect of the stiffness in the connections, as well as the use of apartment modules are investigated. In addition a dynamic analysis is run, and stochastic subspace state space system identification is used to verify the model. This can later be used for verification of the actual building when finished, and will be an important method to determine the actual damping and stiffness. Based on the findings in this work, the concept is assumed feasible, possible with some changes an even better concept is achieved. It will be exciting to see how Sweco will develop the concept further in the next planning phase.
Online Access
Free
Resource Link
Less detail

Reassessment of the Integrity of a Partially Failed Glulam Structure

https://research.thinkwood.com/en/permalink/catalogue128
Year of Publication
2014
Topic
Design and Systems
Mechanical Properties
Material
Glulam (Glue-Laminated Timber)
Application
Roofs

Withdrawal Properties of Threaded Rods Embedded in Glued-Laminated Timber Elements

https://research.thinkwood.com/en/permalink/catalogue217
Year of Publication
2016
Topic
Connections
Mechanical Properties
Material
Glulam (Glue-Laminated Timber)
Author
Stamatopoulos, Haris
Organization
Norwegian University of Science and Technology
Year of Publication
2016
Country of Publication
Norway
Format
Thesis
Material
Glulam (Glue-Laminated Timber)
Topic
Connections
Mechanical Properties
Keywords
Withdrawal Properties
Threaded Rods
Finite Element Model
Language
English
Research Status
Complete
Summary
There is a complete lack of guidelines for the estimation of the withdrawal stiffness of threaded rods with larger diameters. Moreover, Eurocode 5 imposes a limitation to the angle between the rod-axis and the grain direction (a = 30°) without taking into account that splitting may be prevented by reinforcement. The lack of knowledge of proper design, documentation of mechanical behaviour, design guidelines and design codes for threaded rods are barriers for the development of timber connections with these fasteners. The withdrawal properties (capacity and stiffness) of axially loaded threaded rods were investigated in the present thesis by use of experimental, analytical and numerical methods. An overview of the background information and research on withdrawal of screws and threaded rods is presented in Part I of the present thesis. Part II consists of 4 appended papers where the findings of this Ph.D. project are presented. Part III consists of 3 appendices where some analytical remarks together with the detailed experimental and numerical results are presented. According to experimental observation, the specimens exhibited high withdrawal capacity and stiffness (without initial soft response). Based on the experimental results, the necessary input parameters for the analytical method were quantified. In particular, simple expressions for the mean and 5%-percentile withdrawal strength, the shear stiffness and the brittleness were developed. In general, the analytical estimations and the experimental results were in good agreement. Numerical estimations overestimated stiffness especially for small angles and short embedment lengths; however this overestimation was smaller in the case of longer rods. Finally, the experimental results from tests with pairs of rods showed that the effectiveness per each rod was quite high, despite the fact that rods were placed with small edge distances and spacings.
Online Access
Free
Resource Link
Less detail

6 records – page 1 of 1.