Comparison of Bending Stiffness of Cross-Laminated Solid Timber Derived by Modal Analysis of Full Panels and by Bending Tests of Strip-Shaped Specimens
The design of cross-laminated solid timber (CLT) as load-bearing plates is mainly governed by serviceability criterions like maximal deflection and susceptibility to vibration. Hence, predicting the respective behavior of such plates requires accurate information about their elastic properties. According to product standards, the bending stiffness of CLT has to be assessed from 4-point bending tests of strip-shaped specimens, cut from the CLT panels. By comparing elastic properties of CLT derived by means of modal analysis of full panels with the results of bending tests on 100 mm and 300 mm wide strip-shaped specimens it is shown, that by testing single 100 mm wide strip-shaped specimens bending stiffness of full panels cannot be assessed correctly, whereas single 300 mm wide strips or averages of 5 to 6 100 mm wide strip-shaped specimens lead to acceptable results. Hence, strip-shaped specimens should only be used in the course of factory quality control or when assessing the bending stiffness of parts of CLT panels used as beam-like load-bearing elements but not to derive bending stiffness of gross CLT panels. Verification by carrying out static bending tests of gross CLT panels under different loading situations showed that alternatively to tests on strip-shaped specimens or estimations with the compound theory, the overall stiffness properties of CLT can be derived directly by a modal analysis of full-size panels.
An overview on the mechanical and physical properties of cross laminated timber (solid wood
panels) in the building industry and its use in timber construction is presented. Structure-property
relations for solid wood based materials are discussed. Important properties, such as strength, sorption, diffusion, thermal conductivity in relation to the board structure are presented. By varying the structure, the properties can be optimized over a wide range. The focus of this publication lies on experimental works performed by Swiss researchers at the ETH Zürich.
The feasibility of a portable NIR sensor for off-line determination of diverse wood quality aspects relevant in the production of glue-laminated timber was demonstrated. The best performance was noticed for assessing wood moisture content, with a lower capacity to estimate wood density and mechanical properties. NIR spectroscopy was modestly capable of predicting surface roughness. However, the traceability of the raw resources and the automatic classification of diverse wood defects were successfully demonstrated. The developed chemometric model could predict the total delamination and detailed delamination length. Finally, recommendations regarding further system development were provided with the aim of implementation and integration of the NIR measurement into glue-laminated timber production plants.
Cross laminated timber (CLT) has been developed to a worldwide well-known and versatile useable building material. Currently increasing rates in production volume and distribution can be observed. In fact CLT, thanks to its laminar structure making it well suited for use in construction, provides new horizons in timber engineering, in areas which had until now been the realm of mineral building materials like concrete and masonry.
After a short introduction, this paper aims to demonstrate current production processes used for rigid CLT. In section 2 the process steps are described and essential requirements, as well as pros and cons of various production techniques, are discussed. Latest results of R & D and of development and innovation in production technology are presented. In section 3 test and monitoring procedures in the area of the internal quality assurance, known as factory production control (FPC), are presented. Diverse regulations, in the form of technical approvals for CLT as well as in the CLT product standard prEN 16351 [1], are discussed. Additionally, some technological aspects of the product, CLT, together with a comparison of geometrical and production relevant parameters of current technical approvals in Europe are provided in section 4. In the final and main part of the paper, production and technology is presented in a condensed way. The outlook for current and future developments, as well as the ongoing establishment of the solid construction technique with CLT, is given. The product, CLT, comprises an enormous potential for timber engineering as well as for society as a whole. Standardisation and further innovation in production, prefabrication, joining technique, building physics and building construction make it possible for timber engineering to achieve worldwide success.
Delamination resistance and tensile shear strength (TSS) are essential for structural adhesives used in timber industry. Thus these two factors were investigated on bonded ash (Fraxinus excelsior L.) to check the suitability of adhesively bonded ash as building material. For determination of the delamination resistance industrially bonded ash glulam was used. The specimens for the tensile shear tests where produced in the laboratory. Four different adhesives types and different pre-treatment were investigated. The samples for TSS were tested in dry and wet condition. 80% of the tested series met the requirements of the standards at dry, and only 30% passed at wet condition. None of the adhesives tested was able to pass the delamination test. No distinct influence of the different parameters studied is notable for most of the adhesive systems, only extended closed assembly time and lower mixing ratios seem to improve the bond quality of MUF. Additional chemical analyses, conducted to find evidence for the poor bonding performance, showed that fatty acid content, pH and acidic extractives are in between the range of beech (Fagus sylvatica L.) and Spruce (Picea abies Karst.). However the formic acid is an exception with a four times higher amount as the other two species investigated.
Finger joints are commonly used to produce engineered wood products like glued laminated timber beams. Although comprehensive research has been conducted on the structural behaviour of finger joints at ambient temperature, there is very little information about the structural behaviour at elevated temperature. A comprehensive research project on the fire resistance of bonded timber elements is currently ongoing at the ETH Zurich. The aim of the research project is the development of simplified design models for the fire resistance of bonded structural timber elements taking into account the behaviour of the adhesive used at elevated temperature. The paper presents the results of a first series of tensile and bending tests on specimens with finger joints pre-heated in an oven. The tests were carried out with different adhesives that fulfil current approval criteria for the use in loadbearing timber components. The results showed substantial differences in temperature dependant strength reduction and failure between the different adhesives tested. Thus, the structural behaviour of finger joints at elevated temperature is strongly influenced by the behaviour of the adhesive used for bonding and may govern the fire design of engineered wood products like glued laminated timber beams.
Mechanical Performance of Glue Joints in Structural Hardwood Elements as those for solid beech wood, wherein also the crack propagation takes place. It can be concluded that such joints have the necessary strength to be used in timber constructions. Joints of phenol resorcinol formaldehyde (PRF) showed constantly good results, the determined characteristics generally lay in the same range as for beech wood.