Skip header and navigation

47 records – page 2 of 5.

Climatological Analysis for Hygrothermal Performance Evaluation: Mid-Rise Wood

https://research.thinkwood.com/en/permalink/catalogue755
Year of Publication
2014
Topic
Moisture
Material
Light Frame (Lumber+Panels)
Application
Wood Building Systems
Author
Cornick, Steve
Swinton, Michael
Organization
National Research Council of Canada
Year of Publication
2014
Format
Report
Material
Light Frame (Lumber+Panels)
Application
Wood Building Systems
Topic
Moisture
Keywords
Climate
Hygrothermal
Mid-Rise
Moisture Content
National Building Code of Canada
Water Penetration
Research Status
Complete
Summary
The objective of the task is to select, from the 679 locations in Table C-2 of the 2010 National Building Code of Canada (NBC 2010), several representative locations for which long-term historical weather data exists. This information from these locations can subsequently be used to determine the exterior boundary conditions for input files for hygrothermal simulation programs and hygrothermal testing in the laboratory. This report discusses the selection of locations for the hygrothermal simulation task of the project on Mid-rise Wood Buildings and the determination of spray-rates and pressure differentials for the water penetration testing portion of the project.
Online Access
Free
Resource Link
Less detail

Development of a Clear Intumescent Coating for Mass Timber Construction: Fire Protection and Interior Application

https://research.thinkwood.com/en/permalink/catalogue2815
Topic
Fire
Application
Ceilings
Walls
Columns
Organization
National Research Council of Canada
Application
Ceilings
Walls
Columns
Topic
Fire
Keywords
Intumescent Coating
Mass Timber
Encapsulated Mass Timber Construction
Encapsulation
Fire Resistance Rating
Research Status
In Progress
Notes
Project contact is Rokib Hassan at the National Research Council of Canada
Summary
Phase two of a four-phased research project, with the overarching goal of developing transparent intumescent coating (TIC) for mass timber construction, which would be technology certified, IP protected and licensed out. The use of TIC would ensure that fire resistance rating requirements are met while reducing the need for encapsulation, resulting in increased overall aesthetics provided by timber. Phase two focuses on demonstrating a proof-of-concept on a small scale and optimizing the TIC formula and coating thickness based on the testing results. Small scale tests will be conducted to measure fire resistance, weatherability and fire toxicity.
Less detail

Fire Demonstration: Cross-Laminated Timber Stair/Elevator Shaft

https://research.thinkwood.com/en/permalink/catalogue1277
Year of Publication
2015
Topic
Fire
Material
CLT (Cross-Laminated Timber)
Application
Floors
Walls
Shafts and Chases
Author
Su, Joseph
Muradori, Saša
Organization
National Research Council of Canada
Year of Publication
2015
Format
Report
Material
CLT (Cross-Laminated Timber)
Application
Floors
Walls
Shafts and Chases
Topic
Fire
Keywords
Origine
Fire Resistance
Exterior Walls
Research Status
Complete
Summary
The consortium of Nordic Wood Structures, EBC and Yvan Blouin Architect are designing a 13- storey residential building using a mass timber structure. The project, named "Origine" is proposed to be located in the eco-neighbourhood of Pointe-aux- Lièvres in Quebec City and to start construction in spring 2015. The mass timber structure would be composed primarily of glue-laminated timber and cross laminated timber (CLT). The cross-laminated timber consists of at least three orthogonally bonded layers of solid-sawn lumber that are laminated by gluing of longitudinal and transverse layers with structural adhesives to form a solid rectangular-shaped, straight and plane timber intended for floor, roof or wall applications. The National Research Council Canada (NRC) was requested to assist in the demonstration of an alternative solution to noncombustible construction as prescribed in the Québec Construction Code and the National Building Code of Canada (NBCC). Three series of fire tests were conducted at NRC to investigate: the fire endurance (fire resistance) of CLT floor and wall assemblies, the fire performance of a CLT exterior wall assembly, and the fire demonstration of a CLT stair/elevator shaft for the proposed building. This report provides the description and results of the fire demonstration for the CLT stair/elevator shaft. This fire demonstration was funded by the Government of Quebec’s Ministère des Forêts, de la Faune et des Parcs through FPInnovations.
Online Access
Free
Resource Link
Less detail

Fire Endurance of Cross-Laminated Timber Floor and Wall Assemblies for Tall Wood Buildings

https://research.thinkwood.com/en/permalink/catalogue1094
Year of Publication
2014
Topic
Fire
Material
CLT (Cross-Laminated Timber)
Application
Walls
Floors
Author
Su, Joseph
Roy-Poirier, Audrey
Leroux, Patrice
Lafrance, Pier-Simon
Gratton, Karl
Gibbs, Eric
Berzins, Robert
Organization
National Research Council of Canada
Year of Publication
2014
Format
Report
Material
CLT (Cross-Laminated Timber)
Application
Walls
Floors
Topic
Fire
Keywords
Tall Wood
Full Scale
Fiberglass Wool
Encapsulated
Type X Gypsum Board
Fire Endurance Tests
Research Status
Complete
Summary
Standard fire endurance tests were performed on a full-scale floor assembly and a full-scale wall assembly constructed with cross-laminated timber (CLT) as the main structural element. The full-scale floor assembly consisted of CLT panels encapsulated with fiberglass wool and a single layer of 15.9 mm thick Type X gypsum board on the exposed side and with two layers of 12.7 mm thick cement board on the unexposed side. The full-scale wall assembly was constructed from CLT panels encapsulated with two layers of 15.9 mm thick Type X gypsum board on both faces. Nine thermocouples were installed on the unexposed face of both assemblies to monitor the temperature rise throughout the test and nine deflection gauges were installed on each assembly to monitor deformations. The superimposed load applied on the floor assembly was 9.4 kN/m² and the load imposed on the wall assembly was 449 kN/m. The fire endurance period of the full-scale floor assembly was 128 minutes and that of the full-scale wall assembly 219 minutes. Both the full-scale floor assembly and the full-scale wall assembly failed structurally afterwards under the applied loading. No hose stream tests were carried out on the fullscale floor and wall assemblies.
Online Access
Free
Resource Link
Less detail

Fire Safety Challenges of Tall Wood Buildings – Phase 2: Task 2 & 3 – Cross Laminated Timber Compartment Fire Tests

https://research.thinkwood.com/en/permalink/catalogue1214
Year of Publication
2018
Topic
Fire
Material
CLT (Cross-Laminated Timber)
Application
Wood Building Systems
Author
Su, Joseph
Lafrance, Pier-Simon
Hoehler, Matthew
Bundy, Matthew
Organization
National Research Council of Canada
Publisher
Fire Protection Research Foundation
Year of Publication
2018
Format
Report
Material
CLT (Cross-Laminated Timber)
Application
Wood Building Systems
Topic
Fire
Keywords
Compartment Fire Test
Tall Wood
North America
Type X Gypsum Board
Ventilation
Research Status
Complete
Summary
Recent architectural trends include the design and construction of increasingly tall buildings with structural components comprised of engineered wood referred to by names including; cross laminated timber (CLT), laminated veneer lumber (LVL), or glued laminated timber (Glulam). These buildings are cited for their advantages in sustainability resulting from the use of wood as a renewable construction material. Previous research has shown that timber elements contribute to the fuel load in buildings and can increase the initial fire growth rate – potentially overwhelming fire protection system and creating more severe conditions for occupants, emergency responders, and nearby properties. The overarching goal of this project Fire Safety Challenges of Tall Wood Buildings Phase 2 (involving five tasks) is to quantify the contribution of CLT building elements (wall and/or floor-ceiling assemblies) in compartment fires and provide data to allow comparison of the performance of CLT systems against other building systems commonly used in tall buildings.
Online Access
Free
Resource Link
Less detail

Fire Safety of Buildings in Canada

https://research.thinkwood.com/en/permalink/catalogue1866
Year of Publication
2018
Topic
Fire
Material
CLT (Cross-Laminated Timber)
Application
Wood Building Systems
Author
Su, Joseph
Organization
National Research Council of Canada
Publisher
Society of Wood Science and Technology
Year of Publication
2018
Format
Journal Article
Material
CLT (Cross-Laminated Timber)
Application
Wood Building Systems
Topic
Fire
Keywords
Fire Safety
Fire Protection
Fire Resistance
Performance Based Design
Building Codes
Research Status
Complete
Series
Wood and Fiber Science
Summary
This article provides an overview of the code requirements pertinent to large cross-laminated timber (CLT) buildings and the methods for meeting the requirements in Canada. Canadian building codes are objective-based. Compliance with the code is achieved by directly applying the acceptable solutions up to certain prescriptive building sizes (height and area) or by developing alternative solutions beyond the height and area limits. The fire safety design for a CLT building larger than the prescriptive limit must demonstrate that the building will achieve at least the minimum level of performance afforded by noncombustible construction in limiting the structural involvement in fire and contribution to the growth and spread of fire during the time required for occupant evacuation and emergency responses.
Online Access
Free
Resource Link
Less detail

Fire Safety Summary: Fire Research Conducted for the Project on Mid-Rise Wood Construction

https://research.thinkwood.com/en/permalink/catalogue43
Year of Publication
2014
Topic
Fire
Material
CLT (Cross-Laminated Timber)
Light Frame (Lumber+Panels)
Application
Walls
Author
Su, Joseph
Lougheed, Gary
Organization
National Research Council of Canada
Year of Publication
2014
Format
Report
Material
CLT (Cross-Laminated Timber)
Light Frame (Lumber+Panels)
Application
Walls
Topic
Fire
Keywords
Encapsulation
Mid-Rise
Safety
Tall Wood
Exterior Walls
Research Status
Complete
Summary
Working in collaboration with the Canadian Wood Council and FPInnovations and in partnership with Natural Resources Canada and the governments of Ontario, Quebec and British Columbia, the National Research Council conducted a comprehensive research project, Research Consortium for Wood and Wood-Hybrid Mid-rise Buildings. This consortium project aimed to develop technical information that could be used to support acceptable solutions that meet the NBC’s objectives for fire safety, acoustics, and building envelope performance, in order to facilitate the use of wood-based structural materials in mid-rise buildings. The objectives of the Wood and Wood-Hybrid Midrise Buildings research project were to develop performance data and technical solutions in the areas of fire safety, acoustics and building envelope pertinent to the use of wood-based structural materials in mid-rise buildings, i.e. to develop an alternative solution to meet the 2010 NBC requirements for non-combustible construction for 5-6 storey (and taller) buildings. This project was intended to address the immediate needs for technical solutions for mid-rise wood buildings that do not compromise the minimum levels of safety and performance required by the 2010 NBC in the areas of fire safety and fire protection, acoustics, and building envelope performance.
Online Access
Free
Resource Link
Less detail

Fire Testing of Rooms with Exposed Wood Surfaces in Encapsulated Mass Timber Construction

https://research.thinkwood.com/en/permalink/catalogue1867
Year of Publication
2018
Topic
Fire
Material
CLT (Cross-Laminated Timber)
Application
Wood Building Systems
Author
Su, Joseph
Leroux, Patrice
Lafrance, Pier-Simon
Berzins, Robert
Gibbs, Eric
Weinfurter, Mark
Organization
National Research Council of Canada
Publisher
National Research Council Canada. Construction
Year of Publication
2018
Format
Report
Material
CLT (Cross-Laminated Timber)
Application
Wood Building Systems
Topic
Fire
Keywords
Encapsulated
Mass Timber
Fire Tests
Fire Performance
Char Layer
Fire Regrowth
Research Status
Complete
Series
Client Report (National Research Council Canada. Construction)
Summary
In early 2018, with funding support from Natural Resources Canada and the Province of Ontario, the National Research Council of Canada conducted a series of room scale fire tests of Encapsulated Mass Timber Construction (EMTC). The goal of this test series is to further quantify the contribution of mass timber elements to fires and provide additional data for forming the technical basis for exposed mass timber elements in EMTC buildings without significantly increasing fire risks to life and property. The goal includes studying the fire performance of the 2nd generation cross-laminated timber (CLT) in resisting char layer fall-off, which could cause fire regrowth in the cooling phase of fully developed fires. The issues of char layer fall-off for the 1st generation CLT panels resulting in fire regrowth during the cooling phase of the fire were clearly revealed in the previous large scale CLT compartment fire tests under the auspices of the Fire Protection Research Foundation.
Online Access
Free
Resource Link
Less detail

Full Scale Exterior Wall Test on Nordic Cross-Laminated Timber System

https://research.thinkwood.com/en/permalink/catalogue2
Year of Publication
2015
Topic
Design and Systems
Fire
Material
CLT (Cross-Laminated Timber)
Application
Walls
Author
Gibbs, Eric
Su, Joseph
Organization
National Research Council of Canada
Year of Publication
2015
Format
Report
Material
CLT (Cross-Laminated Timber)
Application
Walls
Topic
Design and Systems
Fire
Keywords
Full Scale
Type X Gypsum Board
Exterior Wall
Research Status
Complete
Summary
This report describes a full-scale exterior wall fire test conducted on December 16, 2014 on a Nordic cross-laminated timber (CLT) wall system. The test was conducted in accordance with CAN/ULC-S134-13, Standard Method of Fire Test of Exterior Wall Assemblies. The test was conducted using the exterior wall fire test facility located in the Burn Hall of the NRC Fire Laboratory, Mississippi Mills, Ontario. The CLT wall system was assembled to represent a continuous solid wood wall covered by a water barrier membrane and insulation. The pilot burners were lit prior to the commencement of the test. Gas flow to the burners was manually adjusted to follow the prescribed heat input required by the standard.
Online Access
Free
Resource Link
Less detail

Full-Scale Mass Timber Shaft Demonstration Fire

https://research.thinkwood.com/en/permalink/catalogue3
Year of Publication
2015
Topic
Fire
Material
CLT (Cross-Laminated Timber)
Application
Shafts and Chases
Author
Dagenais, Christian
Su, Joseph
Ranger, Lindsay
Muradori, Sasa
Organization
FPInnovations
National Research Council of Canada
Year of Publication
2015
Format
Report
Material
CLT (Cross-Laminated Timber)
Application
Shafts and Chases
Topic
Fire
Keywords
Type X Gypsum Board
Origine
Fire Demonstration
Research Status
Complete
Summary
A full-scale demonstration dire was conducted at National Research Council Canada to show how a mass timber vertical shaft could withstand a severe fire exposure lasting at least two hours. The fire resistance tests and the demonstration fire were performed to support the approval and construction of a tall wood building in Quebec city; the building is planned to be 13 storeys which includes a 12-storey wood structure above a 1-storey concrete podium. An updated calculation methologody to determine the fire resistance of CLT is provided in Capter 8 (Fire) of the CLT Handbook.
Online Access
Free
Resource Link
Less detail

47 records – page 2 of 5.