Skip header and navigation

3 records – page 1 of 1.

Development and Evaluation of CLT Shear Wall Using Drift Pinned Joint

https://research.thinkwood.com/en/permalink/catalogue673
Year of Publication
2014
Topic
Connections
Mechanical Properties
Material
CLT (Cross-Laminated Timber)
Application
Shear Walls
Author
Nakashima, Shoichi
Kitamori, Akihisa
Komatsu, Kohei
Que, Zeli
Isoda, Hiroshi
Year of Publication
2014
Format
Conference Paper
Material
CLT (Cross-Laminated Timber)
Application
Shear Walls
Topic
Connections
Mechanical Properties
Keywords
Cedar
Shear Failure
Drift Pin Joint
Steel Connectors
Conference
World Conference on Timber Engineering
Research Status
Complete
Notes
August 10-14, 2014, Quebec City, Canada
Summary
The connectors for the CLT shear wall with drift pin joint were suggested. The wall composed of five layers Japanese cedar CLT, steel connectors and drift pins (diameter d = 16mm). The horizontal shear performances of the walls were evaluated by static experiment and 2D frame analysis. The experimental parameter was number and position of drift pins. Characteristic failure was shear failure on the border of the laminae. There were good agreement on initial stiffness, yield load and second stiffness between experiment and calculation.
Online Access
Free
Resource Link
Less detail

Development of CLT Shear Frame Using Metal Plate Insert Connections

https://research.thinkwood.com/en/permalink/catalogue697
Year of Publication
2014
Topic
Connections
Mechanical Properties
Material
CLT (Cross-Laminated Timber)
Application
Shear Walls
Author
Kitamori, Akihisa
Nakashima, Shoichi
Isoda, Hiroshi
Year of Publication
2014
Format
Conference Paper
Material
CLT (Cross-Laminated Timber)
Application
Shear Walls
Topic
Connections
Mechanical Properties
Keywords
Failure Mode
Joints
Steel Plate
Strength
Steel Connectors
Conference
World Conference on Timber Engineering
Research Status
Complete
Notes
August 10-14, 2014, Quebec City, Canada
Summary
The purpose of this study is to develop a high strength leg joint for shear wall made of small size cross laminated timber panel in a simple system. The joint of CLT in which steel plate was inserted in the central slit and fixed by high strength bolt at inside of short steel pipes was proposed. In order to grasp the failure mode and strength of CLT member, material tests on embedment and shear were carried out using small CLT blocks. The test results indicated that there is few reinforce effect by cross bonding of each lamina. It was concluded that the precise estimation of the strength of CLT member is important in order to develop the joint proposed in this paper.
Online Access
Free
Resource Link
Less detail

Effect of Array on Tensile Load Carrying Capacity CLT Drift Pinned Joint

https://research.thinkwood.com/en/permalink/catalogue1532
Year of Publication
2016
Topic
Connections
Mechanical Properties
Material
CLT (Cross-Laminated Timber)
Author
Nakashima, Shoichi
Kitamori, Akihisa
Araki, Yasuhiro
Isoda, Hiroshi
Year of Publication
2016
Format
Conference Paper
Material
CLT (Cross-Laminated Timber)
Topic
Connections
Mechanical Properties
Keywords
Reduction Coefficients
Dowel-Type Connections
Drift Pinned Joint
Tensile Tests
Stiffness
Proportional Limit Load
Conference
World Conference on Timber Engineering
Research Status
Complete
Notes
August 22-25, 2016, Vienna, Austria p. 772-779
Summary
A reduction coefficient is applied in usual design of multiple dowels type connections. The numbers of stiffeners in row is one of important factor to decide this coefficient. CLT drift pinned joint showed small orthotropy against in plane tensile load. Tensile tests of multiple drift pins joints were performed to evaluate the effect of array. Numbers of drift pins n in each specimen were same (n=12), but the arrangements were different (2 x 6, 3 x 4, 4 x 3, 6 x 2). Also the grain directions were parameters (0, 90 degrees). The reduction of initial stiffness and proportional limit load showed good agreement between theoretical prediction and experimental results.
Online Access
Free
Resource Link
Less detail