Skip header and navigation

1 records – page 1 of 1.

What Is the Impact of Mass Timber Utilization on Climate and Forests?
Year of Publication
Environmental Impact
CLT (Cross-Laminated Timber)
Wood Building Systems
Pasternack, Rachel
Wishnie, Mark
Clarke, Caitlin
Wang, Yangyang
Belair, Ethan
Marshall, Steve
Gu, Hongmei
Nepal, Prakash
NDolezal, Franz
Lomax, Guy
Johnston, Craig
Felmer, Gabriel
Morales-Vera, Rodrigo
Puettmann, Maureen
Huevel, Robyn
USDA Forest Service Forest Products Laboratory
University of Exeter
Universidad de Chile
Universidad Católica del Maule
Ganguly, Indroneil
Year of Publication
Journal Article
CLT (Cross-Laminated Timber)
Wood Building Systems
Environmental Impact
Life-Cycle Assessment
Climate Change
Embodied Carbon
Carbon Storage
Research Status
As the need to address climate change grows more urgent, policymakers, businesses, and others are seeking innovative approaches to remove carbon dioxide emissions from the atmosphere and decarbonize hard-to-abate sectors. Forests can play a role in reducing atmospheric carbon. However, there is disagreement over whether forests are most effective in reducing carbon emissions when left alone versus managed for sustainable harvesting and wood product production. Cross-laminated timber is at the forefront of the mass timber movement, which is enabling designers, engineers, and other stakeholders to build taller wood buildings. Several recent studies have shown that substituting mass timber for steel and concrete in mid-rise buildings can reduce the emissions associated with manufacturing, transporting, and installing building materials by 13%-26.5%. However, the prospect of increased utilization of wood products as a climate solution also raises questions about the impact of increased demand for wood on forest carbon stocks, on forest condition, and on the provision of the many other critical social and environmental benefits that healthy forests can provide. A holistic assessment of the total climate impact of forest product demand across product substitution, carbon storage in materials, current and future forest carbon stock, and forest area and condition is challenging, but it is important to understand the impact of increased mass timber utilization on forests and climate, and therefore also on which safeguards might be necessary to ensure positive outcomes. To thus assess the potential impacts, both positive and negative, of greater mass timber utilization on forests ecosystems and emissions associated with the built environment, The Nature Conservancy (TNC) initiated a global mass timber impact assessment (GMTIA), a five-part, highly collaborative research program focused on understanding the potential benefits and risks of increased demand for mass timber products on forests and identifying appropriate safeguards to ensure positive outcomes.
Online Access
Resource Link
Less detail