Skip header and navigation

4 records – page 1 of 1.

Design Equations for Dowel Embedment Strength and Withdrawal Resistance for Threaded Fasteners in CLT

https://research.thinkwood.com/en/permalink/catalogue226
Year of Publication
2014
Topic
Connections
Material
CLT (Cross-Laminated Timber)
Author
Kennedy, Shawn
Salenikovich, Alexander
Munoz, Williams
Mohammad, Mohammad
Year of Publication
2014
Country of Publication
Canada
Format
Conference Paper
Material
CLT (Cross-Laminated Timber)
Topic
Connections
Keywords
Embedment Strength
Threaded Fasteners
withdrawal resistance
Lag Screws
Self Drilling Screws
Canada
Language
English
Conference
World Conference on Timber Engineering
Research Status
Complete
Notes
August 10-14, 2014, Quebec City, Canada
Summary
The Canadian standard for engineering design in wood (CSA O86) adopted the European yield model for calculations of the lateral resistance of connections with dowel-type fasteners. This model takes into account the yielding resistance of the fastener, the assembly's geometry and the embedment strength of wood. The latter is considered a function of the relative density of wood and diameter of the fastener. The purpose of this study is to verify the significance of these variables as applied to the embedment strength for threaded dowel-type fasteners of diameters 6.4 mm and greater in Canadian glulam products. The importance of this research is justified by the growing interest in the use of large-diameter threaded fasteners in heavy timber and hybrid structures of high load-bearing capacity. Based on the results of 960 tests, a new design model for the embedment strength is proposed for potential implementation in CSA O86 standard and the impact of such a change is presented.
Online Access
Free
Resource Link
Less detail

Design Equations for Embedment Strength of Wood for Threaded Fasteners in the Canadian Timber Design Code

https://research.thinkwood.com/en/permalink/catalogue281
Year of Publication
2014
Topic
Connections
Material
Glulam (Glue-Laminated Timber)
Author
Kennedy, Shawn
Salenikovich, Alexander
Munoz, Williams
Mohammad, Mohammad
Sattler, Derek
Year of Publication
2014
Country of Publication
Canada
Format
Conference Paper
Material
Glulam (Glue-Laminated Timber)
Topic
Connections
Keywords
Dowel Type Fastener
Lateral Resistance
Yielding Resistance
Embedment Strength
Canada
Language
English
Conference
World Conference on Timber Engineering
Research Status
Complete
Notes
August 10-14, 2014, Quebec City, Canada
Summary
The Canadian standard for engineering design in wood (CSA O86) adopted the European yield model for calculations of the lateral resistance of connections with dowel-type fasteners. This model takes into account the yielding resistance of the fastener, the assembly's geometry and the embedment strength of wood. The latter is considered a function of the relative density of wood and diameter of the fastener. The purpose of this study is to verify the significance of these variables as applied to the embedment strength for threaded dowel-type fasteners of diameters 6.4 mm and greater in Canadian glulam products. The importance of this research is justified by the growing interest in the use of large-diameter threaded fasteners in heavy timber and hybrid structures of high load-bearing capacity. Based on the results of 960 tests, a new design model for the embedment strength is proposed for potential implementation in CSA O86 standard and the impact of such a change is presented.
Online Access
Free
Resource Link
Less detail

Evaluation of the In-Plane Shear Strength of CLT

https://research.thinkwood.com/en/permalink/catalogue637
Year of Publication
2014
Topic
Mechanical Properties
Material
CLT (Cross-Laminated Timber)
Application
Beams
Author
Gagnon, Sylvain
Mohammad, Mohammad
Munoz, Williams
Popovski, Marjan
Year of Publication
2014
Country of Publication
Canada
Format
Conference Paper
Material
CLT (Cross-Laminated Timber)
Application
Beams
Topic
Mechanical Properties
Keywords
Canada
In-Plane Shear Strength
Language
English
Conference
World Conference on Timber Engineering
Research Status
Complete
Notes
August 10-14, 2014, Quebec City, Canada
Summary
Several analytical and empirical methods have been developed and adopted in Europe for the determination of shear and bending properties of Cross-laminated Timber (CLT) elements loaded out-of-plane and in-plane. However, proposed evaluation methods for determining in-plane shear strength in CLT elements acting as deep beam or lintels need to be verified on Canadian CLT products. This paper presents results from recent testing program following established ASTM standard methods for evaluating the in-plane shear strength of CLT elements for beam applications. Results indicate that the existing test method applicable to Structural Composite Lumber (SCL) may be suitable for the evaluation of in-plane shear strength of CLT elements.
Online Access
Free
Resource Link
Less detail

Failure Modes in CLT Connections

https://research.thinkwood.com/en/permalink/catalogue495
Year of Publication
2014
Topic
Connections
Mechanical Properties
Material
CLT (Cross-Laminated Timber)
Author
Mohammad, Mohammad
Quenneville, Pierre
Salenikovich, Alexander
Zarnani, Pouyan
Munoz, Williams
Year of Publication
2014
Country of Publication
Canada
Format
Conference Paper
Material
CLT (Cross-Laminated Timber)
Topic
Connections
Mechanical Properties
Keywords
Failure Modes
Brittle Behaviour
Canada
New Zealand
Dowels
Bolts
Rivets
Language
English
Conference
World Conference on Timber Engineering
Research Status
Complete
Notes
August 10-14, 2014, Quebec City, Canada
Summary
Information on ductile and brittle failure modes is critical for proper design of timber connections in Crosslaminated Timber (CLT). While considerable research has been conducted in Europe and Canada on the ductile performance of connections in CLT, little is known about the brittle behaviour. This paper presents new information from testing programs and analysis performed in Canada and in New Zealand on the brittle performance of dowel-type fasteners in CLT. The testing programs have been designed to trigger brittle failure modes based on minimum end distances and fasteners spacings specified in the Canadian timber design standard. Timber rivets and bolts/dowels are covered under this study. At the time of writing of this abstract, the testing program is advancing and results will be available at the time of paper submission.
Online Access
Free
Resource Link
Less detail