The largest source of energy consumption and greenhouse gas emissions in Canada and around the world is buildings. As a consequence, building designers are encouraged to adopt designs that reduce operational energy, through both increasingly stringent energy codes and voluntary green building programs that go beyond code requirements...
Effective preservative treatments for Canadian glulam products are needed to maintain markets for mass timber on building facades, access markets with significant termite hazards, and expand markets for wood bridges. For all three applications, borate-treatment...
Field tests of untreated and preservative-treated glulam beams in outdoor exposure, in ground contact and above ground, were inspected for decay after five years. Copper azole and ACQ-D-treated material was in excellent condition, while moderate to severe decay was present in untreated non-durable material...
Glulam and laminated veneer lumber protected by a combination of treatment with borate by two processes, and a film-forming coating, were exposed outdoors in an above-ground field test using a modified post and rail test design. After eight years’ exposure, early to moderate...
Glulam manufactured from laminating stock of three species pre-treated with ACQ-D or CA was exposed outdoors in an above-ground field test using a modified post and rail test design. After six years’ exposure, early to moderate decay was found in untreated test...
Cross-laminated timber (CLT) may require preservative treatment in markets with severe termite hazards. Given the size of CLT panels, conventional pressure treatment would not be feasible. We therefore assessed the treatability of CLT panels with an alternative low moisture uptake surface-applied penetrating process for applying termiticides. Hem-fir panels were selected for the initial tests on the grounds that western hemlock and amabilis fir are relatively treatable. Nine test panels were dip treated and stored for 7, 14, or 21 day activation periods. Borate retention ranged from 1.2 to 6.5 kg/m3 and penetration ranged from 3 to 9 mm. Longer activation periods did not result in improved penetration. Greater penetration would likely be needed to meet performance-based standards.