Journal of Structural and Construction Engineering: Transactions of AIJ
Summary
In this paper, the new type of seismic retrofit method using CLT panels as shear walls is proposed. In this method, setting small CLT panels in RC frame and bonding each panel and panel to RC frame with epoxy resin, panels compose shear walls. The advantages of this technique are: There are less dust, noise, and vibration during construction; Light weight panels enable easy construction and short construction period; Light weight panels also cause small seismic force.
In this research, cyclic loading tests for 5 types of reinforced specimens and 2 types of plain RC frames as control were conducted.
The stress analysis showed that the bond strength between CLT and RC and shear modulus of CLT in these specimens match the result of element tests. So the specimen strength could be divided into the RC frame strength and the CLT strength until the initial deformation. As the bond strength between CLT and RC was smaller than the shear strength of CLT, the specimens can be stronger by increasing the adhesive area.
A concrete-filled steel tube (CFT) column system has many advantages compared with ordinary sttel or reinforced concrete system. One of the main advantages is the interaction between steel tube and concrete: occurrence of the local buckling of steel tube is delayed by the restraint of concrete, and the strength of concrete is increased by the confining effect provided from the steel tube. Extensive research work has been done in Japan over the last 15 years, including "New Urban Housing Project" and "US-Japan Cooperative Earthquake Research Program", in addition to the work done by individual universities and industries, which has been presented at the annual meeting of Architectural Institute of Japan (AIJ). This paper introduces the merits, design provisions and recent construction trends of CFT column systems in Japan, and discusses the results of trial designs of CFT theme structures which have been carried out to look for the advantages in the performance and construction cost compared with other constructional system.
The paper presents some experimental data and phenomenon on bracket anchor connections for Cross-Laminated-Timber. The goal of this research is to provide a better understanding of the seismic performance of bracket connections subjected to seismic actions and how to choose and design bracket connections for Cross-Laminated-Timber structures. Test configuration and experimental setups are illustrated in details; cyclic displacement schedules of the connections in two directions are presented considering that CLT wall has horizontal sliding in the plane and uplift at the end in quasi-state tests. Different failure modes and force transmission mechanisms of different connections under the loading protocol were analysed. And important quantities for seismic design such as strength, and stiffness, equivalent yield load, peak load and ductility of the connections are evaluated and compared among different kinds of connections; an excellent connector is revealed in ductility and load capacity by test data analysis. In addition, some suggestions to choose and design bracket anchor connections are given.
Earthquake-resisting performance of glulam frame structure was evaluated by shaking table tests on a specially designed glulam “double cross shape” specimen composed of slotted bolted connection (SBC) system. By the first vibration test using sinusoidal wave, the specimen survived until 80% level of input waves without damage. After renewing SBC system, the second vibration test was done on a same specimen using the JMA-Kobe NS waves having a maximum acceleration of 816gal. The specimen survived until 100% level of input without damage but failed by the panel-shear when 120% level was inputted. Earthquake-resisting performance of glulam moment-resisting joints composed of SBC system was considered as satisfactory enough for ductile joint system, but improvement of panelshear of glulam member itself was recognized as a future research need.
Various kind of in-plane bending tests of cross laminated timber (CLT) with different shapes have been previously carried out. The results indicate that the bending strength of CLT loaded in plane reduces as the number of layer increases. To evaluate this lamination effect on in-plane bending strength of CLT, a computational model based on Monte Carlo method was developed. The estimated bending strength showed the same tendency.
International Journal of Advanced Structural Engineering
Summary
This paper presents analytical and numerical models for semirigid timber frame with Lagscrewbolt (LSB) connections. A series of static and reverse cyclic experimental tests were carried out for different beam sizes (400, 500, and 600 mm depth) and column–base connections with different numbers of LSBs (4, 5, 8). For the beam–column connections, with increase in beam depth, moment resistance and stiffness values increased, and ductility factor reduced. For the column–base connection, with increase in the number of LSBs, the strength, stiffness, and ductility values increased. A material model available in OpenSees, Pinching4 hysteretic model, was calibrated for all connection test results. Finally, analytical model of the portal frame was developed and compared with the experimental test results. Overall, there was good agreement with the experimental test results, and the Pinching4 hysteretic model can readily be used for full-scale structural model.
Journal of the Society of Materials Science, Japan
Summary
Glued laminated timber (glulam) composed of mechanical-graded lamina shows higher strength reliability than lumber. However the glulam still has wider strength distribution than steel or concrete for structural applications because of the large difference between the mean and the lower limit value. This study aimed at reduction of the coefficient of variation of the glulam in bending strength by partial reinforcement technique using wooden sheets. The wooden sheets made from bamboo or white oak were covered to several defects on the surface of glulam such as large knots and finger joints. The strength performance and the reinforcement effect for the bending test of the glulam with reinforcement materials were evaluated.
As a result, it was clarified that a bamboo sheet (two layers) or a white oak sliced veneer sheet could reinforce the defects, and the average of bending strength was improved due to the improvement in the lower value in the strength distribution.
Moment resisting joint with lagscrewbolts shows good mechanical performance and aesthetic. However, beam and column joints rarely showed a brittle shear failure in a panel zone of a column in previous studies. Therefore, a joint system reinforced by long screws was developed to prevent from the failure in this research. The maximum shear strength of the joint increased with increasing the number of long screws. However, the average of six screws specimens was lower than that of four screws, because the glulam and some of the screws were damaged due to the narrow space between the screws during an inserting process of the screws.
IOP Conference Series: Materials Science and Engineering
Summary
In recent years, development of wood engineering is gradually increasing. Instead of using many wood columns, cross laminated timber is expected for constructing spacious open space building. Since cross-laminated timber has high rigidity and strength, cross-laminated timber is expected to be used as earthquake resistant wall or floor diaphragm that makes the span of building can be increased and the position of the wall can be adjusted openly. In order to optimize the performance of cross-laminated timber for open space building, original cross laminated timber core structure method was developed. In this paper, the development concept of original cross laminated timber core structure method will be explained. In this method, the joint connection for each element such as joint connection for wall-concrete foundation, wall-beam, and wall to hanging wall was also developed. The experiment to verify the strength and rigidity of each connection has been conducted and the result will be described. The shaking table experiment of 3-story open space building constructed by original cross laminated timber structure using varies earthquake waves was conducted. In this experiment natural period, shear force for each floor, story drift, and building response data is taken. The result shows the structure designed by original CLT core structure method is satisfy the requirement based on Japan cross-laminated panel structure regulation.