Skip header and navigation

1 records – page 1 of 1.

Structural Capacity of One-Way Spanning Large-Scale Cross-Laminated Timber Slabs in Standard and Natural Fires

https://research.thinkwood.com/en/permalink/catalogue2734
Year of Publication
2021
Topic
Fire
Mechanical Properties
Material
CLT (Cross-Laminated Timber)
Application
Floors
Ceilings
Author
Wiesner, Felix
Bartlett, Alastair
Mohaine, Siyimane
Robert, Fabienne
McNamee, Robert
Mindeguia, Jean-Christophe
Bisby, Luke
Organization
University of Queensland
The University of Edinburgh
CERIB Fire Testing Centre
Brandskyddslaget
University of Bordeaux
Publisher
Springer
Year of Publication
2021
Country of Publication
Australia
United Kingdom
France
Sweden
Format
Journal Article
Material
CLT (Cross-Laminated Timber)
Application
Floors
Ceilings
Topic
Fire
Mechanical Properties
Keywords
Deflection
Temperature
Load Bearing Capacity
Ventilation
Fire Safety
Language
English
Research Status
Complete
Series
Fire Technology
Summary
This paper describes selected observations, measurements, and analysis from a series of large-scale experiments on cross-laminated timber (CLT) slabs that were exposed to fire from below, using four different heating scenarios, with a sustained mechanical loading of 6.3 kN m per metre width of slab. The deflection response and in-depth timber temperatures are used to compare the experimental response against a relatively simple structural fire model to assess the load bearing capacity of CLT elements in fire, including during the decay phase of natural fires. It is demonstrated that the ventilation conditions in experiments with a fixed fuel load are important in achieving burnout of the contents before structural collapse occurs. A mechanics-based structural fire model is shown to provide reasonably accurate predictions of structural failure (or lack thereof) for the experiments presented herein. The results confirm the importance of the ventilation conditions on the fire dynamics, burning duration, and the achievement of functional fire safety objectives (i.e. maintaining stability and compartmentation), in compartments with exposed CLT.
Online Access
Free
Resource Link
Less detail