Skip header and navigation

2 records – page 1 of 1.

Analysis of Rotational Stiffness of the Timber Frame Connection

https://research.thinkwood.com/en/permalink/catalogue2763
Year of Publication
2020
Topic
Connections
Material
Glulam (Glue-Laminated Timber)
Application
Frames
Author
Johanides, Marek
Kubíncová, Lenka
Mikolášek, David
Lokaj, Antonín
Sucharda, Oldrich
Mynarcík, Petr
Publisher
MDPI
Year of Publication
2020
Format
Journal Article
Material
Glulam (Glue-Laminated Timber)
Application
Frames
Topic
Connections
Keywords
Rotational Stiffness
Frame Connection
Screw
Numerical Model
FEM
Finite Element Model
Mechanical Fasteners
Language
English
Research Status
Complete
Series
Sustainability
Summary
Initially, timber was considered only as an easily accessible and processable material in nature; however, its excellent properties have since become better understood. During the discovery of new building materials and thanks to new technological development processes, industrial processing technologies and gradually drastically decreasing forest areas, wood has become an increasingly neglected material. Load-bearing structures are made mostly of reinforced concrete or steel elements. However, ecological changes, the obvious problems associated with environmental pollution and climate change, are drawing increasing attention to the importance of environmental awareness. These factors are attracting increased attention to wood as a building material. The increased demand for timber as a building material offers the possibility of improving its mechanical and physical properties, and so new wood-based composite materials or new joints of timber structures are being developed to ensure a better load capacity and stiffness of the structure. Therefore, this article deals with the improvement of the frame connection of the timber frame column and a diaphragm beam using mechanical fasteners. In common practice, bolts or a combination of bolts and pins are used for this type of connection. The subject of the research and its motivation was to replace these commonly used fasteners with more modern ones to shorten and simplify the assembly time and to improve the load capacity and rigidity of this type of frame connection.
Online Access
Free
Resource Link
Less detail

Analysis of Timber-Concrete Ceiling Structure in Multi-Storey Building

https://research.thinkwood.com/en/permalink/catalogue859
Year of Publication
2014
Topic
Acoustics and Vibration
Material
Timber-Concrete Composite
Application
Ceilings
Author
Sucharda, Oldrich
Mikolášek, David
Brozovsky, Jiri
Publisher
Scientific.net
Year of Publication
2014
Country of Publication
Switzerland
Format
Journal Article
Material
Timber-Concrete Composite
Application
Ceilings
Topic
Acoustics and Vibration
Keywords
Multi-Storey
Eigenfrequencies
Load
finite element method
Language
English
Research Status
Complete
Series
Advanced Materials Research
Summary
The paper deals with a numerical analysis of timber-concrete ceiling. The finite element method is used for the analysis. The calculation takes into account a dynamic effect of load. The structure creates the ceiling of the gymnasium. The goal of the paper is a study of ceiling eigenfrequencies and a maximum response to a harmonic excitation...
Online Access
Free
Resource Link
Less detail