Skip header and navigation

5 records – page 1 of 1.

An Analytical Estimation on Seismic Performance of 3 Story Construction with "Sugi" CLT Panels Depending on Connection Properties

https://research.thinkwood.com/en/permalink/catalogue487
Year of Publication
2014
Topic
Seismic
Connections
Material
CLT (Cross-Laminated Timber)
Application
Wood Building Systems
Author
Miyake, Tatsuya
Matsumoto, Kazuyuki
Tsuchimoto, Takahiro
Isoda, Hiroshi
Kawai, Naohito
Yasumura, Motoi
Year of Publication
2014
Country of Publication
Canada
Format
Conference Paper
Material
CLT (Cross-Laminated Timber)
Application
Wood Building Systems
Topic
Seismic
Connections
Keywords
Dynamic Properties
Static Properties
Language
English
Conference
World Conference on Timber Engineering
Research Status
Complete
Notes
August 10-14, 2014, Quebec City, Canada
Summary
In this paper, the relations between the load-deformation property of the CLT connections and the seismic performance of the 3 story CLT construction are analytically discussed. The static and the dynamic properties of the CLT connections led each from the static and the dynamic tests were obviously different, however the analytical results based on these properties were agree each with the results of the static and the dynamic tests proving the adequateness of estimated properties. The further study on the dynamic effects of CLT connections is necessary.
Online Access
Free
Resource Link
Less detail

Seismic Design Cases of CLT Buildings in Japan after 2014

https://research.thinkwood.com/en/permalink/catalogue1672
Year of Publication
2016
Topic
Design and Systems
Seismic
Material
CLT (Cross-Laminated Timber)
Application
Wood Building Systems
Author
Watanabe, Hiroshi
Miyake, Tatsuya
Matsumoto, Kazuyuki
Tsuchimoto, Takahiro
Isoda, Hiroshi
Kawai, Naohito
Yasumura, Motoi
Year of Publication
2016
Country of Publication
Austria
Format
Conference Paper
Material
CLT (Cross-Laminated Timber)
Application
Wood Building Systems
Topic
Design and Systems
Seismic
Keywords
Japan
Time History Response Analysis
Language
English
Conference
World Conference on Timber Engineering
Research Status
Complete
Notes
August 22-25, 2016, Vienna, Austria p. 3853-3860
Summary
In this paper, the general process and results of the seismic design on four buildings with Japanese CLT construction after 2014 based on the time history response analysis as the only legal structural design method in Japan at the present moment, are shown. As a result, it is recognized that the buildings has enough seismic performance for the regulation of seismic design in Japan.
Online Access
Free
Resource Link
Less detail

A Seismic Design of 3-Story Building Using Japanese "Sugi" CLT Panels

https://research.thinkwood.com/en/permalink/catalogue682
Year of Publication
2014
Topic
Design and Systems
Seismic
Material
CLT (Cross-Laminated Timber)
Application
Wood Building Systems
Author
Matsumoto, Kazuyuki
Miyake, Tatsuya
Haramiishi, Takeshi
Tsuchimoto, Takahiro
Isoda, Hiroshi
Kawai, Naohito
Yasumura, Motoi
Year of Publication
2014
Country of Publication
Canada
Format
Conference Paper
Material
CLT (Cross-Laminated Timber)
Application
Wood Building Systems
Topic
Design and Systems
Seismic
Keywords
Panels
Sugi
Japan
Dynamic Analysis
Language
English
Conference
World Conference on Timber Engineering
Research Status
Complete
Notes
August 10-14, 2014, Quebec City, Canada
Summary
In this paper, the general process and results of the seismic design on a 3-story building with Japanese Sugi CLT construction based on the time history response analysis as the only legal structural design method in Japan at the present moment, are shown. As a result, it is recognized that the building has enough seismic performance for the regulation of seismic design in Japan
Online Access
Free
Resource Link
Less detail

Study on Seismic Performance of Building Construction with Cross Laminated Timber: Part 16: Ex Post Fact Analysis for the Static Test of the Full Scale 3-Story Model

https://research.thinkwood.com/en/permalink/catalogue979
Year of Publication
2013
Topic
Seismic
Material
CLT (Cross-Laminated Timber)
Application
Wood Building Systems
Author
Matsumoto, Kazuyuki
Miyake, Tatsuya
Hamamoto, Takashi
Goto, Hiroshi
Kaiko, Naoto
Yasumura, Motoi
Organization
Architectural Institute of Japan
Year of Publication
2013
Country of Publication
Japan
Format
Journal Article
Material
CLT (Cross-Laminated Timber)
Application
Wood Building Systems
Topic
Seismic
Keywords
Static Loading Tests
Displacement
Full Scale
Language
Japanese
Research Status
Complete
Summary
Performance-Based Earthquake Engineering (PBEE) has been developed mainly for the region of high seismicity for the last three decades. Though abundant information on PBEE is available throughout the world, the application of this PBEE to the moderate-seismicity regions such as their maximum considered earthquake being less than magnitude 6.5 is not always straightforward because some portion of the PBEE may not be appropriate in these regions due to the environment different from the high-seismicity regions. This paper reviews the state-of-art in PBEE briefly. Then, the seismic hazard in moderate-seismicity regions including Korean Peninsula is introduced with its unique characteristics. With this seismic hazard, representative lowrise RC MRF structures and high-rise RC residential wall structures are evaluated by using PBEE approach. Also, the range of forces and deformations of the representative building structures in Korea is given. Based on these reviews, some ideas for the use of PBEE to improve the state-of-practice in moderate-seismicity regions are proposed.
Online Access
Free
Resource Link
Less detail

Study on Seismic Performance of Building Structure with Cross Laminated Timber: Part 13: Relative Story Displacement of Full Scale 3-Story Model -Comparisons with Shaking Table Test

https://research.thinkwood.com/en/permalink/catalogue982
Year of Publication
2013
Topic
Seismic
Material
CLT (Cross-Laminated Timber)
Application
Wood Building Systems
Author
Yahaura, Sota
Goto, Hiroshi
Hamamoto, Takashi
Gosei, Murakami
Miyake, Tatsuya
Matsumoto, Kazuyuki
Kaiko, Naoto
Organization
Architectural Institute of Japan
Year of Publication
2013
Country of Publication
Japan
Format
Journal Article
Material
CLT (Cross-Laminated Timber)
Application
Wood Building Systems
Topic
Seismic
Keywords
Static Load Tests
Shaking Table Test
Shear Force
Seismic Performance
Language
Japanese
Research Status
Complete
Summary
The material presented in this paper refers to a part of the investigation on cross-laminated (XLam) wall panel systems subjected to seismic excitation, carried out within the bilateral project realized by the Institute of Earthquake Engineering and Engineering Seismology (IZIIS) and the Faculty of Civil and Geodetic Engineering at the University of Ljubljana (UL FCGE). The full program of the research consista of basic tests of small XLam wooden blocks and quasi-static tests of anchors, then quasi-static tests of full-scale wall panels with given anchors, shaking-table tests of two types of XLam systems including ambient-vibration tests, and finally analytical research for the definition of the computational model for the analysis of these structural systems. In this paper, the full-scale shaking-table tests for one XLam system type (i.e. specimen 1 consisting of two single-unit massive wooden XLam panels) that have been performed in the IZIIS laboratory are discussed. The principal objectives of the shaking-table tests have been to get an insight into the behavior of the investigated XLam panel systems under seismic excitations, develop a physical and practical computational model for simutalion of the dynamic response based on the tests, and finally correlate the results with those from the previously performed quasi-static tests on the same wooden panel types. The obtained experimental results have been verified using a proposed computational model that included new contitutive relationships for anchors and contact zones between panels and foundations. Because a reasonable agreement between the numerical and experimental results has been achieved, the proposed computational model is expected to provide a solid basis for future research on the practical design of these relatively new materials and systems.
Online Access
Free
Resource Link
Less detail