Skip header and navigation

3 records – page 1 of 1.

Description of Small and Large-Scale Cross Laminated Timber Fire Tests

https://research.thinkwood.com/en/permalink/catalogue1339
Year of Publication
2017
Topic
Fire
Material
CLT (Cross-Laminated Timber)
Application
Rooms
Wood Building Systems
Author
Emberley, Richard
Putynska, Carmen
Bolanos, Aaron
Lucherini, Andrea
Solarte, Angela
Soriguer, Diana
Gonzalez, Mateo
Humphreys, Kathryn
Hidalgo, Juan
Maluk, Cristian
Law, Angus
Torero, Jose
Publisher
ScienceDirect
Year of Publication
2017
Country of Publication
Netherlands
Format
Journal Article
Material
CLT (Cross-Laminated Timber)
Application
Rooms
Wood Building Systems
Topic
Fire
Keywords
Large Scale
Small Scale
Compartment Fire Test
Heat Flux
Temperature
Self-Extinction
Language
English
Research Status
Complete
Series
Fire Safety Journal
Summary
A large-scale fire test was conducted on a compartment constructed from cross laminated timber (CLT). The internal faces of the compartment were lined with non-combustible board, with the exception of one wall and the ceiling where the CLT was exposed directly to the fire inside the compartment. Extinction of the fire occurred without intervention. During the fire test, measurements were made of incident radiant heat flux, gas phase temperature, and in-depth temperature in the CLT. In addition, gas flow velocities and gas phase temperatures at the opening were measured, as well as incident heat fluxes at the facade due to flames and the plume leaving the opening. The fuel load was chosen to be sufficient to attain flashover, to achieve steadystate burning conditions of the exposed CLT, but to minimize the probability of uncertain behaviors induced by the specific characteristics of the CLT. Ventilation conditions were chosen to approximate maximum temperatures within a compartment. Wood cribs were used as fuel and, following decay of the cribs, selfextinction of the exposed CLT rapidly occurred. In parallel with the large-scale test, a small scale study focusing on CLT self-extinction was conducted. This study was used: to establish the range of incident heat fluxes for which self-extinction of the CLT can occur; the duration of exposure after which steady-state burning occurred; and the duration of exposure at which debonding of the CLT could occur. The large-scale test is described, and the results from both the small and large-scale tests are compared. It is found that selfextinction occurred in the large-scale compartment within the range of critical heat fluxes obtained from the small scale tests.
Online Access
Free
Resource Link
Less detail

Fire Performance of Metal-Free Timber Connections

https://research.thinkwood.com/en/permalink/catalogue2186
Year of Publication
2015
Topic
Fire
Connections
Material
LVL (Laminated Veneer Lumber)
CLT (Cross-Laminated Timber)
Other Materials
Application
Wood Building Systems
Beams
Columns
Trusses
Author
Brandon, Daniel
Maluk, Cristian
Ansell, Martin
Harris, Richard
Walker, Pete
Bisby, Luke
Bregulla, Julie
Publisher
ICE Publishing
Year of Publication
2015
Country of Publication
United Kingdom
Format
Journal Article
Material
LVL (Laminated Veneer Lumber)
CLT (Cross-Laminated Timber)
Other Materials
Application
Wood Building Systems
Beams
Columns
Trusses
Topic
Fire
Connections
Keywords
Fire Performance
Steel Connections
Thermal Conductivity
Thermal Behaviour
Mechanical Behavior
Metal-Free Connections
Language
English
Research Status
Complete
Series
Proceedings of the Institution of Civil Engineers - Construction Materials
Notes
DOI link: http://dx.doi.org/10.1680/coma.14.00055
Online Access
Free
Resource Link
Less detail

Fire Performance of Metal-Free Timber Connections

https://research.thinkwood.com/en/permalink/catalogue82
Year of Publication
2015
Topic
Connections
Fire
Material
LVL (Laminated Veneer Lumber)
Application
Wood Building Systems
Author
Brandon, Daniel
Maluk, Cristian
Ansell, Martin
Harris, Richard
Walker, Pete
Bisby, Luke
Bregulla, Julie
Publisher
ICE Publishing
Year of Publication
2015
Country of Publication
United Kingdom
Format
Journal Article
Material
LVL (Laminated Veneer Lumber)
Application
Wood Building Systems
Topic
Connections
Fire
Keywords
Glass Fiber Reinforced Polymer
Thermal Behaviour
Mechanical Behaviour
Language
English
Research Status
Complete
Series
Proceedings of the Institution of Civil Engineers - Construction Materials
ISSN
1747-6518
Summary
The fire performance of heavy timber frame structures is often limited by the poor fire performance of its connections. Conventional timber connections, dowelled or toothed plate connections typically use steel as a connector material. In a fire, the steel parts rapidly conduct heat into the timber, leading to reduced fire performance. Replacing metallic connectors with alternative non-metallic, low thermal conductivity connector materials can, therefore, lead to improved connection performance in fire. This paper presents an experimental study into the fire performance of metal-free timber connections comprising a hot-pressed plywood flitch plate and glass-fibre-reinforced polymer dowels. The thermal behaviour of the connections at elevated temperatures is studied using a standard cone calorimeter apparatus and a novel heat transfer rate inducing system. The latter is a fire testing system developed at the University of Edinburgh. The mechanical behaviour of the connection during severe heating was also studied using an environmental chamber at temperatures up to 610°C. The results demonstrate that heat transfer in the non-metallic connections is governed by the thermal properties of the timber, resulting in significant enhancements in connection fire performance.
Online Access
Free
Resource Link
Less detail