Skip header and navigation

4 records – page 1 of 1.

Dynamic Response of an Under-Deck Cable-Stayed Timber-Concrete Composite Bridge Under a Moving Load

https://research.thinkwood.com/en/permalink/catalogue2037
Year of Publication
2018
Topic
Mechanical Properties
Design and Systems
Material
Timber-Concrete Composite
Application
Bridges and Spans

Dynamic Response of Tall Timber Buildings

https://research.thinkwood.com/en/permalink/catalogue130
Year of Publication
2015
Topic
Design and Systems
Wind
Material
CLT (Cross-Laminated Timber)
Application
Wood Building Systems
Author
Abeysekera, Ishan
MÁLAGA-CHUQUITAYPE, Christian
Organization
Society for Earthquake and Civil Engineering Dynamics
Year of Publication
2015
Country of Publication
United Kingdom
Format
Conference Paper
Material
CLT (Cross-Laminated Timber)
Application
Wood Building Systems
Topic
Design and Systems
Wind
Keywords
High-Rise
Mid-Rise
Tall Wood
Tornado
Dynamic Behaviour
Finite element (FE) model
Language
English
Conference
SECED 2015 Conference
Research Status
Complete
Notes
July 9-10, 2015, Cambridge, UK
Summary
The low carbon footprint and high structural efficiency of engineered wood materials make tall-timber buildings an attractive option for high-rise construction. However, due to the relatively low mass and stiffness characteristics of timber structures, some concerns have been raised regarding their dynamic response. This paper examines the dynamic behaviour of tall timber buildings under tornado and downburst wind loads. It summarizes the results of extensive response history analyses over a suite of FE structural models subjected to different wind actions and compares them with the ISO10137 comfort criteria. In general, large levels of floor accelerations are observed in particular for stiffer medium-rise structures with significant density of walls. It is shown that downburst loading governs the peak acceleration response of medium-rise buildings whilst tornado loading becomes more critical for taller buildings. The effectiveness of TMDs in reducing peak acceleration values is explored. This study emphasizes the need for further studies on the dynamic behaviour of tall timber buildings.
Online Access
Free
Resource Link
Less detail

Modified Foundation Modelling of Dowel Embedment in Glulam Connections

https://research.thinkwood.com/en/permalink/catalogue584
Year of Publication
2016
Topic
Connections
Mechanical Properties
Material
Glulam (Glue-Laminated Timber)
Author
Karagiannis, Vasileios
MÁLAGA-CHUQUITAYPE, Christian
Elghazouli, Ahmed
Publisher
ScienceDirect
Year of Publication
2016
Country of Publication
Netherlands
Format
Journal Article
Material
Glulam (Glue-Laminated Timber)
Topic
Connections
Mechanical Properties
Keywords
Douglas-Fir
Dowels
Finite Element
Spruce
Embedment Behaviour
Strain Concentrations
Deformation
Modified Foundation Models
Language
English
Research Status
Complete
Series
Construction and Building Materials
Summary
This paper examines the embedment behaviour of single-dowel connections in Scandinavian Spruce Glulam by means of experimental and numerical investigations. First, the experimental results of a series of single-dowel tests on samples of different geometry and grain directions are presented. The evolution of local strain concentrations around the fastener at increasing levels of bearing deformation, is reported in detail by means of non-contact field strain measurements and its implications are discussed. Detailed finite element simulations are also carried out and subsequently employed to highlight the main features of the response of doweled connections in glulam. A foundation model, initially developed for Douglas-fir (Pseudotsuga menziesii) timber, is upgraded and adapted for Scandinavian Spruce Glulam (Picea abies) elements subjected to loads acting perpendicular and parallel to the grain direction. The proposed model is based on the definition of equivalent material parameters for the crushing region around the dowel hole. To this end, relationships for the estimation of material characteristics as a function of the crushing volume are suggested. The validity and accuracy of the proposed modified foundation models are examined against the experimental results. It is shown the improved foundation model is able to simulate the embedment stiffness, capacity and inelastic behaviour of single-dowel connections on glulam with reasonable accuracy for strains of up to 8 %, and can therefore be used for design and assessment purposes.
Online Access
Free
Resource Link
Less detail

Response of CLT Shear Walls Under Cyclic Loads

https://research.thinkwood.com/en/permalink/catalogue1669
Year of Publication
2016
Topic
Mechanical Properties
Seismic
Material
CLT (Cross-Laminated Timber)
Application
Shear Walls
Author
MÁLAGA-CHUQUITAYPE, Christian
Skinner, Jonathan
Dowdall, Alan
Kernohan, Juliet
Year of Publication
2016
Country of Publication
Austria
Format
Conference Paper
Material
CLT (Cross-Laminated Timber)
Application
Shear Walls
Topic
Mechanical Properties
Seismic
Keywords
Cyclic Loads
Full Scale
Stiffness
Strength
Energy Dissipation
Ductility
Language
English
Conference
World Conference on Timber Engineering
Research Status
Complete
Notes
August 22-25, 2016, Vienna, Austria p. 3821-3827
Summary
This paper presents an experimental study into the lateral response of cross-laminated-timber (CLT) shear walls under cyclic loads with particular attention to the distribution of forces between the panel-to-floor connections. Six tests on full-scale specimens of different geometric characteristics and connection configurations are presented. The test set-up and wall configurations are described and a detailed account of the experimental results and observations is presented. The paper examines key response features including stiffness, strength, energy dissipation and ductility. Especial attention is given to an accurate measurement of the load sharing between different brackets and its evolution throughout the cyclic action. The results reported offer valuable information on the lateral forcedisplacement response of CLT walls and the applicability of widely employed design assumptions.
Online Access
Free
Resource Link
Less detail