Skip header and navigation

7 records – page 1 of 1.

Finite Element Modelling of the Cyclic Behaviour of CLT Connectors and Walls

https://research.thinkwood.com/en/permalink/catalogue1653
Year of Publication
2016
Topic
Mechanical Properties
Seismic
Connections
Material
CLT (Cross-Laminated Timber)
Application
Walls
Author
Aranha, Chrysl
Branco, Jorge
Lourenço, Paulo
Flatscher, Georg
Schickhofer, Gerhard
Year of Publication
2016
Country of Publication
Austria
Format
Conference Paper
Material
CLT (Cross-Laminated Timber)
Application
Walls
Topic
Mechanical Properties
Seismic
Connections
Keywords
Shear Tests
Axial Tests
Cyclic Loads
Force-Displacement Curves
Numerical Model
Language
English
Conference
World Conference on Timber Engineering
Research Status
Complete
Notes
August 22-25, 2016, Vienna, Austria p. 3533-3540
Summary
The characterization of the behaviour of connectors used in Cross-laminated Timber (CLT) structures is an important aspect that needs to be considered in their seismic design. In this paper, the data from shear and axial tests conducted on connectors have been used to define their force-displacement curves under cyclic loads using the SAWS...
Online Access
Free
Resource Link
Less detail

Influence of Moisture Content and Gaps on the Withdrawal Resistance of Self Tapping Screws in CLT

https://research.thinkwood.com/en/permalink/catalogue299
Year of Publication
2014
Topic
Connections
Mechanical Properties
Moisture
Material
CLT (Cross-Laminated Timber)
Author
Silva, Catarina
Ringhofer, Andreas
Branco, Jorge
Lourenço, Paulo
Schickhofer, Gerhard
Organization
National Congress of Experimental Mechanics
Year of Publication
2014
Country of Publication
Portugal
Format
Conference Paper
Material
CLT (Cross-Laminated Timber)
Topic
Connections
Mechanical Properties
Moisture
Keywords
Self-Tapping Screws
Withdrawal
Gaps
Moisture Content
Language
English
Conference
9th National Congress of Experimental Mechanics
Research Status
Complete
Notes
October 15-17, 2014, Aveiro, Portugal
Summary
Self-tapping screws (STS) have been proclaimed as the easiest solution for structural timber connections, in special for cross laminated timber (CLT) constructions. In order to understand deeply the composite model “CLT-STS”, an experimental campaign which comprised 270 withdrawal tests was carried out. Maximum withdrawal load capacity of self-tapping screws inserted in plane side of a three layered CLT panel was evaluated considering three main parameters: moisture levels of CLT (i), number of gaps (ii) and the width of gaps (iii). Regarding (i), connections were tested with CLT at 8%, 12% and 18% of moisture content. Concerning (ii) and (iii), different test configurations with 1, 2 and 3 gaps, with 0 or 4mm, were tested. The influences of moisture content and number of gaps were modeled. Further a correlation between test results and a prediction model developed by Uibel and Blaß (2007) has been proposed.
Online Access
Free
Resource Link
Less detail

The Influences of Moisture Content Variation, Number and Width of Gaps on the Withdrawal Resistance of Self Tapping Screws inserted in Cross Laminated Timber

https://research.thinkwood.com/en/permalink/catalogue1359
Year of Publication
2016
Topic
Connections
Moisture
Mechanical Properties
Material
CLT (Cross-Laminated Timber)

In-Plane Stiffness of Timber Floors Strengthened with CLT

https://research.thinkwood.com/en/permalink/catalogue516
Year of Publication
2015
Topic
Mechanical Properties
Connections
Material
CLT (Cross-Laminated Timber)
Application
Floors
Author
Branco, Jorge
Kekeliak, Milos
Lourenço, Paulo
Publisher
Springer Berlin Heidelberg
Year of Publication
2015
Country of Publication
Germany
Format
Journal Article
Material
CLT (Cross-Laminated Timber)
Application
Floors
Topic
Mechanical Properties
Connections
Keywords
Full Scale
Numerical model
Push-Out Tests
Stiffness
Language
English
Research Status
Complete
Series
European Journal of Wood and Wood Products
ISSN
1436-736X
Summary
Five full-scale timber floors were tested in order to analyse the in-plane behaviour of these structural systems. The main objective was an assessment of the effectiveness of in-plane strengthening using cross-laminated timber (CLT). To that end, one unstrengthened specimen (original), one specimen strengthened with a second layer of floorboards, two specimens strengthened with three CLT panels, and one specimen strengthened with two CLT panels, were tested. A numerical analysis was then performed in order to analyse the composite behaviour of the timber floors in more detail. Due to its importance as regards composite behaviour, the first phase of the experimental programme was composed of push out tests on specimens representing the shear connection between the timber beams and the CLT pan CLT panels. This paper describes els. This paper describes the tests performed and the numerical modelling applied the tests performed and the numerical modelling applied to evaluate the composite behaviour of the strengthened timber floors. The use of CLT panels is revealed to be an effective way to increase the in-plane stiffness of timber floors, through which the behaviour of the composite structure can be significantly changed, depending on the connection applied, or modified as required.
Online Access
Free
Resource Link
Less detail

A Project Contribution to the Development of Sustainable Multi-Storey Timber Buildings

https://research.thinkwood.com/en/permalink/catalogue1162
Year of Publication
2013
Topic
Design and Systems
Material
CLT (Cross-Laminated Timber)
Glulam (Glue-Laminated Timber)
Application
Wood Building Systems
Author
Silva, Catarina
Branco, Jorge
Lourenço, Paulo
Year of Publication
2013
Country of Publication
Portugal
Format
Conference Paper
Material
CLT (Cross-Laminated Timber)
Glulam (Glue-Laminated Timber)
Application
Wood Building Systems
Topic
Design and Systems
Keywords
Urban Timber System
Language
English
Conference
Portugal SB13
Research Status
Complete
Notes
October 30-November 1 2013, Guimarães, Portugal
Online Access
Free
Resource Link
Less detail

State-Of-The-Art Review on Cyclic Behaviour of Connections Used in CLT Multi-Storey Buildings: Test Results and Modelling

https://research.thinkwood.com/en/permalink/catalogue472
Year of Publication
2015
Topic
Connections
Mechanical Properties
Material
CLT (Cross-Laminated Timber)
Application
Wood Building Systems
Author
Branco, Jorge
Sousa, Hélder
Lourenço, Paulo
Ahvenainen, Julia
Aranha, Chrysl
Publisher
Dolnoslaskie Wydawnictwo Edukacyjne (DWE)
Year of Publication
2015
Country of Publication
Poland
Format
Conference Paper
Material
CLT (Cross-Laminated Timber)
Application
Wood Building Systems
Topic
Connections
Mechanical Properties
Keywords
Monotonic Tests
Cyclic Tests
Strength
Damping Ratios
Language
English
Conference
International Conference on Structural Health Assessment of Timber Structures
Research Status
Complete
Notes
September 9-11, 2015, Wroclaw, Poland
Summary
A timber building made of cross-laminated timber (CLT) panels is a modular system where all panels are pre-cut in factory. On site, the single components are then assembled connecting the panels with mechanical fasteners, mainly angle brackets with nails and/or screws, hold-downs, metal plates and self-tapping screws. CLT wall panels are very rigid in comparison to its connections. Thus, connections play an essential role in maintaining the integrity of the structure providing the necessary strength, stiffness and ductility, and consequently, they need close attention by designers. However, there is still a lack of proper design rules for these connections, in particular under cyclic loads, mainly due to a large variety of connectors and connection systems. In this paper, the different properties of connections for CLT buildings, on both monotonic and cyclic behaviour, are described using recent works from different authors. From the bibliography, it is clear that experimental data, regarding both monotonic and cyclic tests, is required for the assessment of the performance of the CLT structural system attending to the interaction between rigid panels and connections. This work evidences results from experimental campaigns and numerical analysis regarding definition and quantification of the cyclic response of CLT connections. Examples regarding monotonic and cyclic tests aimed to evaluate cyclic behaviour of connections through physical parameters, such as the impairment of strength and the damping ratio, are presented and discussed.
Online Access
Payment Required
Resource Link
Less detail

UT System : A Structural System to Build Taller Urban Timber Houses with Aspired Spatial Flexibility

https://research.thinkwood.com/en/permalink/catalogue277
Year of Publication
2014
Topic
Design and Systems
Material
CLT (Cross-Laminated Timber)
Glulam (Glue-Laminated Timber)
Application
Wood Building Systems
Author
Silva, Catarina
Branco, Jorge
Lourenço, Paulo
Organization
International Association for Housing Science
Year of Publication
2014
Country of Publication
Portugal
Format
Conference Paper
Material
CLT (Cross-Laminated Timber)
Glulam (Glue-Laminated Timber)
Application
Wood Building Systems
Topic
Design and Systems
Keywords
Urban Densification
Tall Timber
Urban Timber (UT) System
Moisture
Durability
Fire Resistance
Acoustic Performance
Joints
Language
English
Conference
40th IAHS World Congress on Housing
Research Status
Complete
Notes
December 16-19, 2014, Funchal, Portugal
Summary
In past few years, in consequence to the continuous increase of urban densities and seeking for a more sustainable profile for construction, some new proposals for tall timber city housing have emerged. The development of new wood-based materials, like cross laminated timber (CLT), has made possible to believe to build high with timber. Demonstration buildings located in different locations around the world contribute to the development of this new concept of urban housing. With the exception of few recent proposals based on hybrid systems, majority of buildings so far built are fully based in the monolithic construction system offered by CLT panels. Despite all the advantages related with this monolithic system, two main important weaknesses related with architectural freedom have been pointed out: the excessive compartmentalization of inner spaces and the external expression of an extruded box with reduced openings. Inspired on new CLT/steel and CLT/concrete hybrid proposals and their advantages in comparison to the CLT monolithic system, a CLT/glulam hybrid construction system, named UT system (urban timber system), has been developed. CLT remains the main structural material in the UT system but, glulam linear elements are used to reduce the CLT walls both inside and in the building perimeter. Further, based in the bundled tube concept, UT system looks into the possibility of overcome eccentricity problems caused by non-symmetrical location of vertical cores and consequently, offers more design freedom. UT system is described and illustrated, considering concerns related with structural system, tall building specificities, construction sequences, architectural design possibilities, moisture effects, durability, fire resistance, acoustic performance and joints between timber elements.
Online Access
Free
Resource Link
Less detail

7 records – page 1 of 1.