Skip header and navigation

2 records – page 1 of 1.

Compression Perpendicular to Grain Behavior for the Design of a Prefabricated CLT Facade Horizontal Joint

https://research.thinkwood.com/en/permalink/catalogue1540
Year of Publication
2016
Topic
Connections
Design and Systems
Material
CLT (Cross-Laminated Timber)
Application
Wood Building Systems
Hybrid Building Systems
Author
Gasparri, Eugenia
Lam, Frank
Liu, Yingyang
Year of Publication
2016
Country of Publication
Austria
Format
Conference Paper
Material
CLT (Cross-Laminated Timber)
Application
Wood Building Systems
Hybrid Building Systems
Topic
Connections
Design and Systems
Keywords
Envelope
Joints
Self-Tapping Screws
Finite Element Analysis
Prefabricated
Vertical Loads
Language
English
Conference
World Conference on Timber Engineering
Research Status
Complete
Notes
August 22-25, 2016, Vienna, Austria p. 1088-1098
Summary
The present work aims to define horizontal joint dimension tolerances for newly proposed prefabricated façade systems for applications in tall cross laminated timber (CLT) buildings based on the compression perpendicular to grain characteristics of the component. This requires a thorough understanding of structural settlement under vertical loads which can vary at each floor height. An experimental program has been carried out with reference to the case of a platform frame building construction, where major perpendicular to grain compression of the floor can occur under high loads. Five-layer CLT specimens have been tested under compression via the application of a line load with steel plate as well as actual CLT wall specimens. Strengthening contribution using full threaded self-tapping wood screws has also been investigated. Results of deformation characteristics have been validated through a non-linear finite element analysis and further elaborated in order to outline implications in the design of a prefabricated façade.
Online Access
Free
Resource Link
Less detail

Experimental Study on Lateral Resistance of Reinforced Glued-Laminated Timber Post and Beam Structures

https://research.thinkwood.com/en/permalink/catalogue1648
Year of Publication
2016
Topic
Seismic
Mechanical Properties
Material
Glulam (Glue-Laminated Timber)
Application
Beams
Author
Xiong, Haibei
Liu, Yingyang
Lam, Frank
Year of Publication
2016
Country of Publication
Austria
Format
Conference Paper
Material
Glulam (Glue-Laminated Timber)
Application
Beams
Topic
Seismic
Mechanical Properties
Keywords
Cyclic Tests
Full Scale
Reinforcement
Lateral Resistance
Strength
Stiffness
Energy Dissipation
Self-Tapping Screws
FRP
Language
English
Conference
World Conference on Timber Engineering
Research Status
Complete
Notes
August 22-25, 2016, Vienna, Austria p. 3471-3478
Summary
In order to study the lateral resistance of reinforced glued-laminated timber post and beam structures, nine cyclic tests on full-scale one-storey, one-bay timber post and beam construction specimens were carried out. Two reinforcement methods (wrapping fiber reinforced polymer (FRP) and implanting self-tapping screws) and two structural systems (simple frame and knee-braced frame) were considered in the experimental tests. Based on the experimental phenomena and test results, feasibility of the reinforcement was discussed, contribution between different methods was evaluated, and the seismic performances of the specimens were studied. Results showed that both the two reinforcement methods could restrain the development of crack, and recover the strength, stiffness and energy dissipation capacity. It also showed that the lateral resistance could be improved significantly when the failed simple frame retrofitted by reinforcing the joint and adding knee-brace, and this approach can be very practical in engineering.
Online Access
Free
Resource Link
Less detail