Particle Tracking Velocimetry (PTV) is a quantitative field measuring technique originally designed to track individual particles in fluid flows. In this study, PTV was applied for the first time in the context of large scale timber connection testing. The suitability of PTV in structural applications was assessed by tracking the attachment points of string potentiometers and comparing the PTV displacements to those obtained by the potentiometers. Furthermore, it was found that PTV was able to capture crack growth and compute the resulting displacement field in the connection area.
This paper presents an experimental study on ductility and overstrength of dowelled connections. Connection ductility and overstrength derived from monotonic testing are often used in timber connection design in the context of seismic loading, based on the assumption that these properties are similar under monotonic and cyclic loading. This assumption could possibly lead to non-conservative connection design. Therefore, it is necessary to quantify ductility and overstrength for cyclic loading and contrast them with their monotonic performance. For this purpose, monotonic and quasi-static cyclic experimental tests were performed on dowelled LVL and CLT connections. The experimental results were also compared with strength predictions from state-of-the-art analytical models in literature that were verified for ductile and brittle failure under monotonic loading. This work also allowed investigation into a generally applicable overstrength factor for push-pull loaded dowelled connections.
This paper presents an experimental study on rolling shear (RS) strength properties of non-edge-glued cross-laminated timber (CLT) made out of New Zealand Radiata pine (Pinus radiata) structural timber. CLT specimens with 35 and 20 mm thick laminations were studied to evaluate the influence of lamination thickness on the RS strength of CLT. Short-span three-point bending tests were used to introduce high RS stresses in cross layers of CLT specimens and facilitate the RS failure mechanism. Modified planar shear tests from the conventional two-plate planar shear tests were also used to evaluate the RS strength properties. It was found that two test methods yielded comparable RS strength properties and the lamination thickness significantly affected RS strength of the CLT specimens. The test results also indicated that the recommended characteristic RS strength values of CLT products in Europe and Canada might be over conservative. Also, it might be more efficient to specify different RS strength values for CLT with different lamination thickness given the minimum width-to-depth ratio of laminations is satisfied.
This paper presents a study on evaluating rolling shear (RS) strength properties of cross laminated timber (CLT) using torsional shear tests and bending tests. The CLT plates were manufactured with Spruce-Pine-Fir boards and glued with polyurethane adhesive. Two types of layups (3-layer and 5-layer) and two clamping pressures (0.1 MPa and 0.4 MPa) were studied. For the torsional shear tests, small shear block specimens were sampled from the CLT plates and the cross layers were processed to have an annular cross section. Strip specimens were simply sampled from the CLT plates for the bending tests. Based on the failure loads, RS strength properties were evaluated by torsional shear formula, composite beam formulae as well as detailed finite element models, respectively. It was found that the two different test methods yielded different average RS strength value for the same type of CLT specimens. The test results showed that the CLT specimens pressed with the higher clamping pressure had slightly higher average RS strength. The specimens with thinner cross layers also had higher RS strength than the specimens with thicker cross layers.
An experimental and analytical study on rotational behaviour of glulam beam-column moment connections with self-drilling dowels (SDD) was conducted. Connection properties including strength, stiffness, ductility and energy dissipation were experimentally evaluated by testing seven full-scale connection specimens with and without self-tapping screw (STS) reinforcement along timber perpendicular to grain. All the connections showed high initial stiffness and high moment capacity when compared with the test results of bolted connections reported in literature. The unreinforced connections had relatively low ductility due to timber splitting despite the increased fastener edge distance. The STS reinforcement effectively reduced timber splitting tendency and encouraged the yielding of more SDD, leading to slightly increased moment capacity, but significantly improved ductility. A modified analytical model (MAM) was then proposed to predict strength and rotation of the SDD moment connections based on force and moment equilibrium of the glulam members. Improved prediction accuracy was achieved for the SDD moment connections when compared with the past analytical methods.
Rolling shear (RS) strength may govern load carrying capacity of cross laminated timber (CLT) subjected to high out-of-plane loading because high RS stresses may be induced in cross layers and wood typically has low RS strength. This study investigates RS strength properties of none-edge-glued CLT via experimental testing (short-span bending tests and modified planar shear tests) and numerical modelling. CLT specimens with different manufacturing parameters including two timber species (New Zealand grown Douglas-fir and Radiata pine), three lamination thickness (20 mm, 35 mm, and 45 mm) and various lamination aspect ratios (4.1~9.8) were studied. The lamination aspect ratio was found to have a substantial impact on RS strength of CLT. Higher aspect ratios led to a significant increase of RS strength and an approximately linear relationship could be established. With similar lamination aspect ratios, the Radiata pine CLT had higher RS strength than the Douglas-fir CLT. The two different test methods, however, yielded comparable RS strength assessments. Numerical models were further developed to study the influence of the test configurations and gaps in the cross layers on stress distributions in the cross layers. It was also found the compressive stresses perpendicular to grain in cross layers had negligible influence on the RS strength evaluations.
Cross laminated timber (CLT) shear walls typically consist of solid engineered timber panels connected by metal hardware such as hold-downs, angle-brackets and others. Under seismic loads, the panel elements deform mainly in a rocking mode coupled with a sliding mode and small amount of in-plane bending/shear deformations. The connection system normally governs the lateral behaviour of CLT shear walls. This paper presents a finite element wall model CLTWALL2D to study CLT shear wall behaviour. The model consists of elastic orthotropic plate elements for the panels and nonlinear spring elements for the connections. Contact elements are also used for the panel-to-panel interactions. The nonlinear spring properties are represented by a subroutine called HYST that is able to model the strength and stiffness degradation and the pinching effect commonly observed in timber connections. The HYST parameters are calibrated by experimental data of CLT connections and embedded to the CLTWALL2D model. The wall model is validated against experimental data of a CLT shear wall test database. Parametric studies are then carried out to study the influence of gravity loads and vertical connection densities on the wall behaviour in terms of strength, stiffness, ductility, and energy dissipation.
Pres-Lam timber structures are being adopted throughout New Zealand and around the world. This innovative method of timber construction combines the use of large engineered timber members with posttensioning cables/bars. The hybrid version of the Pres-Lam system improves seismic performance through the addition of external or internal steel reinforcing. While the post-tensioning provides re-centering properties, the steel increases energy dissipation from the system as well as increasing moment resistance. The design of these structures is performed to withstand high levels of seismic loading without damage to the structural system. Over time, the post-tensioning force being applied to the structural timber members causes them to reduce in length that has a subsequent impact on the quantity of force being applied. This paper looks at the dynamic characteristics of fundamental period and elastic damping of three recently constructed Pres-Lam buildings, investigating the influence of these losses on the dynamic characteristics. Following this a study of the performance under strong motion is performed. The paper concludes that although the losses in post-tensioning are clear they do not impact on the dynamic characteristics and have only a minor impact on strong motion response.