This study aims to develop an improved understanding of the interfacial bond behavior of softwood glulam joints with bonded-in threaded steel rod. A total of 39 glulam joints with bonded-in single-threaded steel rods were tested to failure in the pull-pull configuration. The test results were presented in term of failure modes, load-relative movement response, pullout strength, and the corresponding slip. The distributions of bonded-in rod axial strain, interfacial bond stress, and relative movement were also analyzed to evaluate the local bond stress– relative movement response in the bond line. The results confirmed that the bond-relative movement response is dependent on the locations along the anchorage length, and the bond-relative movement responses located near both the loaded end and the anchorage end were observed to be stiffer than those at other locations. Finally, the predictions for the load capacity of the glulam joints with bonded-in threaded steel rod were carried out based on several existing empirical formulas.
The objective of this project was to quantify and compare the environmental impacts associated with alternative designs for a typical North American mid-rise office building. Two scenarios were considered; a traditional cast-in-place, reinforced concrete frame and a laminated timber hybrid design, which utilized engineered wood products (cross-laminated timber (CLT) and glulam). The boundary of the quantitative analysis was cradle-to-construction site gate and encompassed the structural support system and the building enclosure. Floor plans, elevations, material quantities, and structural loads associated with a five-storey concrete-framed building design were obtained from issued-for-construction drawings. A functionally equivalent, laminated timber hybrid design was conceived, based on Canadian Building Code requirements. Design values for locally produced CLT panels were established from in-house material testing. Primary data collected from a pilot-scale manufacturing facility was used to develop the life cycle inventory for CLT, whereas secondary sources were referenced for other construction materials. The TRACI characterization methodology was employed to translate inventory flows into impact indicators. The results indicated that the laminated timber building design offered a lower environmental impact in 10 of 11 assessment categories. The cradle-to-gate process energy was found to be nearly identical in both design scenarios (3.5 GJ/m2), whereas the cumulative embodied energy (feedstock plus process) of construction materials was estimated to be 8.2 and 4.6 GJ/m2 for the timber and concrete designs, respectively; which indicated an increased availability of readily accessible potential energy stored within the building materials of the timber alternative.
The present work aims to define horizontal joint dimension tolerances for newly proposed prefabricated façade systems for applications in tall cross laminated timber (CLT) buildings based on the compression perpendicular to grain characteristics of the component. This requires a thorough understanding of structural settlement under vertical loads which can vary at each floor height. An experimental program has been carried out with reference to the case of a platform frame building construction, where major perpendicular to grain compression of the floor can occur under high loads. Five-layer CLT specimens have been tested under compression via the application of a line load with steel plate as well as actual CLT wall specimens. Strengthening contribution using full threaded self-tapping wood screws has also been investigated. Results of deformation characteristics have been validated through a non-linear finite element analysis and further elaborated in order to outline implications in the design of a prefabricated façade.
The two-way action of Cross Laminated Timber (CLT) is often ignored in the design of CLT due to its complexity. But in some cases, for example, large span timber floor/roof, the benefit of taking the two-way action into account may be considerable since it is often deflection controlled in the design. Furthermore CLT panels are typically limited to widths of less than 3 m. therefore, for practical applications, engaging CLT panels in two-way action as a plate in bending would require connecting two panels in the width/minor direction to take out-of-plane loading. To address this technically difficult situation, an innovative connection was developed to join the CLT panels in the minor direction to form a large continuous two-way plate. The two-way action of CLT was also quantified. Static bending test was conducted on CLT panels in the major and minor directions to measure the Modulus of Elasticity (MOE). This provided a benchmark for the following connection test, and data for the future development of computer modeling. The average apparent MOE was 9.09 GPa in the major direction and 2.37 GPa in the minor direction. Several connection techniques were considered and tested, including self-tapping wood screws, glued in steel rods, and steel connectors. One connecting system was found to be effective. For the panel configuration considered, the system was consisted of steel plates, self-tapping wood screws, and 45° screw washers. Two steel plates were placed on the tension side with sixteen screws, and one steel plates was placed on the compression side with four screws. When the screws were driven into the wood, the screws were tightly locked with the washers and steel plates, and at the same time, the wood members were pulled together by the screws. This eliminated any original gap within the connection. The connector was installed to join two CLT members in the minor direction. They were tested under bending with the same setup as above. The connected panels had an average apparent MOE of 2.37 GPa, and an average shear-free MOE of 2.44 GPa, both of which were higher than the counterpart in the full panels. The moment capacity of the connected panels was also high. The minimum moment capacity was 3.2 times the design value. Two large CLT panels were tested under concentrated loading with four corners simply supported. The deflection of nine locations within the panels was measured. This data will be used to validate the computer modeling for CLT two-way action.
In Phase I of Developing Large Span Two Way CLT Floor System (2017-18) we studied the performance of a steel plate connection system for the minor direction of CLT plates. The connected specimens had higher stiffness and strength compared to intact members under bending. In Phase II (2018-19) we designed and tested another connector based on...
In Phase I (2018-19) of this project on Prefabricated Heavy Timber Modular Construction, three major types of connections used in a stackable modular building were studied: intramodule connection, inter-module vertical connection, and inter-module horizontal connection. The load requirement and major design criteria were identified...
This project proposes a timber-based composite floor that can span 12 m and be used in the construction of 40+ story office buildings. This floor system integrates timber panels and timber beams to form a continuous box girder structure. The timber panels function as the flanges and the timber beams as the web. The beams are spaced and connected to the flange panels so that sufficient bending stiffness of a 12 m span can be achieved via the development of composite action.
The current phase of this project studied the performance of the connections between timber elements in the proposed composite member. Six types of connections using different flange material and connection techniques were tested: Cross Laminated Timber (CLT), Laminated Strand Lumber (LSL), Laminated Veneer Lumber (LVL), and Post Laminated Veneer Lumber (PLVL). Glulam was used as the web. The majority of the connections used self-tapping wood screws except one had notches. The load-carrying capacity, stiffness, and ductility of the connections were measured. The stiffness of CLT, LSL, and PLVL connections was in the same range, 19-20 kN/mm per screw. Amongst the three, LSL had the highest peak load and PLVL had the highest proportional limit. The stiffness of the two LVL screw connections was around 13 kN/mm. The notched LVL connection had significantly higher stiffness than the rest, and its peak load was in the same range as LSL, but the failure was brittle.
LVL was used to manufacture the full scale timber composite floor element. With a spacing of 400 mm, the overall stiffness reached 33689 N
mm2×109, which was 2.5 times the combined stiffness of two Glulam beams. The predicted overall stiffness based on Gamma method was within 5% of the tested value, and the estimated degree of composite action was 68%. From both the test results and analytical modeling, the number of screws may be further reduced to 50% or less of the current amount, while maintaining a high level of stiffness.
Future work includes testing the composite floor under different screw spacings,
investigating the effect of concrete topping, and the connections between floor members
and other structural elements.
This project studied the feasibility and performance of a mass timber wall system based on Nail Laminated Timber (NLT) for floor/wall applications, in order to quantify the effects of various design parameters. Thirteen 2.4 m × 2.4 m shear walls were manufactured and tested in this phase. Together with another five specimens tested before, a total eighteen shear wall specimens and ten configurations were investigated. The design variables included fastener type, sheathing thickness, number of sheathings, sheathing material, nailing pattern, wall opening, and lumber orientation. The NLT walls were made of SprucePine-Fir (SPF) No. 2 2×4 (38 mm × 89 mm) lumber and Oriented Strand Lumber (OSB) or plywood sheathing. They were tested under monotonic and reverse-cyclic loading protocols, in accordance with ASTM E564-06 (2018) and ASTM E2126-19, respectively.
Compared to traditional wood stud walls, the best performing NLT based shear wall had 2.5 times the peak load and 2 times the stiffness at 0.5-1.5% drift, while retaining high ductility. The advantage of these NLT-based wall was even greater under reverse-cyclic loading due to the internal energy dissipation of NLT.
The wall with ring nails had higher stiffness than the one with smooth nails. But the performance of ring nails deteriorated drastically under reverse-cyclic loading, leading to a considerably lower capacity. Changing the sheathing thickness from 11 mm to 15 mm improved the strength by 6% while having the same initial stiffness. Adding one more face of sheathing increased the peak load and stiffness by at least 50%. The wall was also very ductile as the load dropped less than 10% when the lateral displacement exceeded 150 mm. The difference created by sheathing material was not significant if they were of the same thickness. Reducing the nailing spacing by half led to a 40% increasing in the peak load and stiffness. Having an opening of 25% of the area at the center, the lateral capacity and stiffness reached 75% or more of the full wall.
A simplified method to estimate the lateral resistance of this mass timber wall system was proposed. The estimate was close to the tested capacity and was on the conservative side. Recommendations for design and manufacturing the system were also presented.
In this study, the duration-of-load (DOL) effect on the rolling shear strength of cross laminated timber (CLT) was evaluated. A stress-based damage accumulation model is chosen to evaluate the DOL effect on the rolling shear strength of CLT. This model incorporates the established short-term rolling shear strength of material and predicts the time to failure under arbitrary loading history. The model was calibrated and verified based on the test data from low cycle trapezoidal fatigue tests (the damage accumulation tests). The long-term rolling shear behaviour of CLT can then be evaluated from this verified model. As the developed damage accumulation model is a probabilistic model, it can be incorporated into a time-reliability study. Therefore, a reliability assessment of the CLT products was performed considering short-term and snow loading cases. The reliability analysis results and factors reflecting the DOL effect on the rolling shear strength of CLT are compared and discussed. The results suggest that the DOL rolling shear strength adjustment factor for CLT is more severe than the general DOL adjustment factor for lumber; and, this difference should be considered in the introduction of CLT into the building codes for engineered wood design.
One component PUR adhesive is widely used in engineered wood products applications, such as cross-laminated timber (CLT). However, the dramatic deterioration of PUR adhesive bond strength at elevated temperature can out tremendously threat for tall wood building, especially under fire. In this project, we are aiming to improving the bond strength of the PUR adhesive at high temperature by incorporating chemically modified halloysite to improve the poor interface between inorganic fillers and the polymer matrices. To improve the interaction with PUR (Loctite UR20 by Henkel®), the halloysite was chemically grafted with polymeric diphenylmethane diisocyanate (pMDI) (pMDI-H). The effect of adding pMDI modified halloysite to the PUR adhesives was investigated in terms of nanofiller dispersibility, thermal and mechanical properties of the pMDI-halloysite-PUR composite film, and the bonding shear strength of the glued Douglas fir and Spruce-Pine-Fir (SPF) shear blocks under different temperature.
Significant improvement of the bond shear strength can be observed with the addition of 5 and 10% of pMDI-modified PUR adhesive, and the key research findings are summarized as below,
a. pMDI can be successfully grafted onto hydroxylated halloysites to improve its dispersibility in one-component PUR adhesive;
b. Addition of pMDI-H into PUR adhesive can lead to improved glass transition temperature and storage modulus. In contrast, no significant enhancement was observed in h-H added PUR films due to the poor dispersibility;
c. Addition of up to 10% h-H and pMDI-H did not show significant change of the shear strength at 20 °C for both Douglas Fir and SPF;
d. Significant enhancement of shear strength at elevated temperature (60-100 °C) can be observed for 5% and 10% pMDI-H modified PUR adhesive, showing 17% improvement for Douglas Fir and 27-37% for SPF.