Skip header and navigation

1 records – page 1 of 1.

Feasibility Study of Tall Concrete-Timber Hybrid System

https://research.thinkwood.com/en/permalink/catalogue1274
Year of Publication
2017
Topic
Seismic
Wind
Design and Systems
Application
Hybrid Building Systems
Author
Kaushik, Kuldeep
Organization
University of British Columbia
Year of Publication
2017
Format
Thesis
Application
Hybrid Building Systems
Topic
Seismic
Wind
Design and Systems
Keywords
Lateral Loads
Gravity Loads
Timber-Concrete Hybrid
Inter-Story Drift
Research Status
Complete
Summary
Although wood is widely used as a construction material, it is mostly limited to low and mid-rise residential construction, partially due to fire code restrictions. This limitation can be overcome by considering hybrid systems which combine wood with non-combustible materials. This research presents an innovative wood-concrete hybrid system, suitable for tall buildings, where a concrete frame with slabs at every third story provides fire separation as well as stiffness and strength to resist gravity and lateral loads. The intermediate stories including their floors are constructed using light-frame wood modules. This approach reduces the environmental footprint of the building, reduces the building weight and therefore the seismic demand on connections and foundation, and speeds up the construction process. For a novel system, numerical modeling is crucial to predicting its structural response to static and dynamic loading. This thesis studies the structural feasibility of the system by developing finite element models and assessing the structural behavior at the component and system levels when subjected to earthquake and wind loads. Nonlinear analyses are performed considering material and geometric nonlinearity using multiple ground motions to estimate the structure’s inter-story drift and base shear. The results demonstrate the feasibility of the proposed wood-concrete hybrid system for tall buildings in high seismic zones.
Online Access
Free
Resource Link
Less detail