Skip header and navigation

12 records – page 1 of 2.

Advanced Topics in Seismic Analysis and Design of Mid-Rise Wood-Frame Structures

https://research.thinkwood.com/en/permalink/catalogue1773
Year of Publication
2016
Topic
Design and Systems
Material
Light Frame (Lumber+Panels)
Application
Wood Building Systems
Author
Ni, Chun
Popovski, Marjan
Wang, Jasmine
Karacabeyli, Erol
Year of Publication
2016
Country of Publication
Austria
Format
Conference Paper
Material
Light Frame (Lumber+Panels)
Application
Wood Building Systems
Topic
Design and Systems
Keywords
Mid-Rise
Dynamic Analysis
Deflection
Diaphragm
National Building Code of Canada
Capacity-Based Design
Language
English
Conference
World Conference on Timber Engineering
Research Status
Complete
Notes
August 22-25, 2016, Vienna, Austria p. 5343-5351
Summary
The following topics in the field of seismic analysis and design of mid-rise (5- and 6-storey) wood-frame buildings are included in this paper: Determination of the building period, linear dynamic analysis of wood-frame structures, deflections of stacked multi-storey shearwalls, diaphragm classification, capacity-based design for woodframe...
Online Access
Free
Resource Link
Less detail

Damage Assessment of Connections used in Cross-Laminated Timber Subject to Cyclic Loads

https://research.thinkwood.com/en/permalink/catalogue225
Year of Publication
2014
Topic
Connections
Seismic
Material
CLT (Cross-Laminated Timber)
Application
Shear Walls
Author
Schneider, Johannes
Karacabeyli, Erol
Popovski, Marjan
Stiemer, Siegfried
Tesfamariam, Solomon
Publisher
American Society of Civil Engineers
Year of Publication
2014
Country of Publication
United States
Format
Journal Article
Material
CLT (Cross-Laminated Timber)
Application
Shear Walls
Topic
Connections
Seismic
Keywords
Fasteners
Damage Index (DI) Method
Brackets
Load Displacement
Hysteretic
Language
English
Research Status
Complete
Series
Journal of Performance of Constructed Facilities
Notes
https://doi.org/10.1061/(ASCE)CF.1943-5509.0000528
Summary
Cross-laminated timber (CLT) products are gaining popularity in the North American market and are being used in midrise wood buildings, in particular, in shearwall applications. Shearwalls provide resistance to lateral loads such as wind and earthquake loads, and therefore it is important to gain a better understanding of the behavior of CLT shearwall systems during earthquake events. This paper is focused on the seismic performance of connections between CLT shearwall panels and the foundation. CLT panels are very stiff and energy dissipation is accomplished by the connections. A literature review on previous research work related to damage prediction and assessment for wood frame structures was performed. Furthermore, a test program was conducted to investigate the performance of CLT connections subjected to simulated earthquake loads. Two different brackets in combination with five types of fasteners were tested under monotonic and cyclic loading protocols. In total, 98 connection tests were conducted and the monotonic load-displacement curves and hysteretic loops were obtained. In this paper, an energy-based cumulative damage assessment model was calibrated with the CLT connection test data. Finally, a correlation between the damage index and physical damage is provided.
Online Access
Free
Resource Link
Less detail

Damage Assessment of Cross Laminated Timber Connections Subjected to Simulated Earthquake Loads

https://research.thinkwood.com/en/permalink/catalogue70
Year of Publication
2012
Topic
Connections
Seismic
Material
CLT (Cross-Laminated Timber)
Application
Shear Walls
Author
Schneider, Johannes
Stiemer, Siegfried
Tesfamariam, Solomon
Karacabeyli, Erol
Popovski, Marjan
Year of Publication
2012
Country of Publication
New Zealand
Format
Conference Paper
Material
CLT (Cross-Laminated Timber)
Application
Shear Walls
Topic
Connections
Seismic
Keywords
Damage
Panels
North American Market
Language
English
Conference
World Conference on Timber Engineering
Research Status
Complete
Notes
July 15-19, 2012, Auckland, New Zealand
Summary
Wood-frame is the most common construction type for residential buildings in North America. However, there is a limit to the height of the building using a traditional wood-frame structure. Cross-laminated timber (CLT) provides possible solutions to mid-...
Online Access
Free
Resource Link
Less detail

Development of Steel-Wood Hybrid Systems for Buildings Under Dynamic Loads

https://research.thinkwood.com/en/permalink/catalogue845
Year of Publication
2012
Topic
Seismic
Design and Systems
Serviceability
Application
Hybrid Building Systems
Author
Stiemer, Siegfried
Tesfamariam, Solomon
Karacabeyli, Erol
Popovski, Marjan
Year of Publication
2012
Country of Publication
Chile
Format
Conference Paper
Application
Hybrid Building Systems
Topic
Seismic
Design and Systems
Serviceability
Keywords
Dynamic Loads
Timber-Steel Hybrid
Strength
Language
English
Conference
International Specialty Conference on Behaviour of Steel Structures in Seismic Areas
Research Status
Complete
Notes
January 9-11, 2012, Santiago, Chile
Online Access
Free
Resource Link
Less detail

Direct Displacement Based Design of A Novel Hybrid Structure: Steel Moment-Resisting Frames with Cross Laminated Timber Infill Walls

https://research.thinkwood.com/en/permalink/catalogue15
Year of Publication
2015
Topic
Design and Systems
Seismic
Material
CLT (Cross-Laminated Timber)
Application
Walls

Ductility Based Force Reduction Factors for Symmetrical Cross-Laminated Timber Structures

https://research.thinkwood.com/en/permalink/catalogue446
Year of Publication
2014
Topic
Mechanical Properties
Seismic
Material
CLT (Cross-Laminated Timber)
Application
Wood Building Systems
Walls
Author
Popovski, Marjan
Pei, Shiling
van de Lindt, John
Karacabeyli, Erol
Organization
European Association of Earthquake Engineering
Year of Publication
2014
Country of Publication
Canada
Format
Conference Paper
Material
CLT (Cross-Laminated Timber)
Application
Wood Building Systems
Walls
Topic
Mechanical Properties
Seismic
Keywords
Force Modification Factors
Ductility
National Building Code of Canada
Fasteners
Seismic Performance
Language
English
Conference
Second European Conference on Earthquake Engineering and Seismology
Research Status
Complete
Notes
August 25-29, 2014, Istanbul, Turkey
Online Access
Free
Resource Link
Less detail

Force Modification Factors for CLT Structures for NBCC

https://research.thinkwood.com/en/permalink/catalogue658
Year of Publication
2014
Topic
Seismic
Material
CLT (Cross-Laminated Timber)
Application
Wood Building Systems
Author
Popovski, Marjan
Pei, Shiling
van de Lindt, John
Karacabeyli, Erol
Publisher
Springer, Dordrecht
Year of Publication
2014
Country of Publication
Netherlands
Format
Book Section
Material
CLT (Cross-Laminated Timber)
Application
Wood Building Systems
Topic
Seismic
Keywords
National Building Code of Canada
Force Modification Factors
Analytical Model
Language
English
Research Status
Complete
Series
Materials and Joints in Timber Structures
ISBN
978-94-007-7811-5
Online Access
Payment Required
Resource Link
Less detail

Literature Survey on Nail-Laminated Timber and Box Beam

https://research.thinkwood.com/en/permalink/catalogue1210
Year of Publication
2017
Topic
Design and Systems
Market and Adoption
Material
NLT (Nail-Laminated Timber)
Application
Beams
Author
Ni, Chun
Karacabeyli, Erol
Organization
FPInnovations
Year of Publication
2017
Country of Publication
Canada
Format
Report
Material
NLT (Nail-Laminated Timber)
Application
Beams
Topic
Design and Systems
Market and Adoption
Keywords
Box Beams
Mechanical Joints
CSA 086
Language
English
Research Status
Complete
Summary
Nail-Laminated Timber (NLT) and box beam are efficient and economical engineered wood products. Although NLT has been used in North America for more than a century, only in recent years it has gained renewed interests as they have been seen as the most economical panel products used in mass timber buildings. Box beams, on the other hand, are lightweight and generally possess higher strength and stiffness than comparable-sized solid timber and are more efficient than solid timber large spans and loads. In this report, existing design provisions and their limitations for the design and construction of NLT in box beam in Canadian standards are reviewed. For NLT, there is a general lack of information related to manufacturing, design and construction to ensure consistent manufacturing and installation practices. Therefore, it is difficult to research and document with confidence the full range of performance that can be achieved with NLT. It is therefore recommended that a North American product standard and design information on structural performance, floor vibration, fire resistance, acoustic performance, and construction risk mitigation measures (e.g. moisture and fire) be developed. In CSA 086, design methods are limited to box beams with flanges and webs bonded with glue. As the flanges and webs of a box beam can be assembled by either glue or mechanical fasteners, it is recommended that design provisions for box beam with mechanical joints be also developed. With the information in Eurocode 5 and relevant supporting research papers, it is ready to be implemented.
Online Access
Free
Resource Link
Less detail

Seismic Behaviour of Cross-Laminated Timber Structures

https://research.thinkwood.com/en/permalink/catalogue2151
Year of Publication
2012
Topic
Seismic
Connections
Mechanical Properties
Material
CLT (Cross-Laminated Timber)
Application
Walls

Status of Cross-Laminated Timber Construction in North-America

https://research.thinkwood.com/en/permalink/catalogue1121
Year of Publication
2013
Topic
Market and Adoption
Material
CLT (Cross-Laminated Timber)
Application
Wood Building Systems
Author
Gagnon, Sylvain
Karacabeyli, Erol
Publisher
Taylor&Francis Group
Year of Publication
2013
Country of Publication
United Kingdom
Format
Book Section
Material
CLT (Cross-Laminated Timber)
Application
Wood Building Systems
Topic
Market and Adoption
Keywords
North America
Construction
Language
English
Research Status
Complete
Series
Structures and Architecture
ISBN
9781482224610
Online Access
Payment Required
Resource Link
Less detail

12 records – page 1 of 2.