Skip header and navigation

4 records – page 1 of 1.

Building Higher with Light-Weight Timber Structures: The Effect of Wind Induced Vibrations

https://research.thinkwood.com/en/permalink/catalogue89
Year of Publication
2015
Topic
Acoustics and Vibration
Wind
Material
CLT (Cross-Laminated Timber)
Light Frame (Lumber+Panels)
Glulam (Glue-Laminated Timber)
Application
Wood Building Systems
Author
Johansson, Marie
Linderholt, Andreas
Bolmsvik, Åsa
Jarnerö, Kirsi
Olsson, Jörgen
Reynolds, Thomas
Organization
Inter-noise
Year of Publication
2015
Country of Publication
United States
Format
Conference Paper
Material
CLT (Cross-Laminated Timber)
Light Frame (Lumber+Panels)
Glulam (Glue-Laminated Timber)
Application
Wood Building Systems
Topic
Acoustics and Vibration
Wind
Keywords
Mid-Rise
High-Rise
Vibration Properties
Language
English
Conference
Inter-noise 2015
Research Status
Complete
Notes
August 9-12, 2015, San Francisco, California, USA
Summary
During the last years the interest in multi-storey timber buildings has increased and several medium-to-high-rise buildings with light-weight timber structure have been designed and built. Examples of such are the 8-storey building Limnologen in Växjö, Sweden, the 9- storey Stadthaus in London, UK and being constructed at the moment, the 14-storey building Treet in Bergen, Norway. These are all light-weight and flexible structures which raise questions regarding the wind induced vibrations. For the building in Norway, the calculated vibration properties of the top floor are on the limit of being acceptable according to the ISO 101371 vibration criteria for human comfort. This paper will give a review of building systems for medium-to-high-rise timber buildings. Measured vibration properties for some medium-to-high-rise timber buildings will also be presented. These data have been used for calculating the peak acceleration values for two example buildings for comparison with the ISO standards. An analysis of the acceleration levels for a building with double the height has also been performed showing that designing for wind induced vibrations in higher timber buildings is going to be very important and that more research into this area is needed.
Online Access
Free
Resource Link
Less detail

Dynamical Properties of a Large Glulam Truss for a Tall Timber Building

https://research.thinkwood.com/en/permalink/catalogue2036
Year of Publication
2018
Topic
Wind
Mechanical Properties
Connections
Material
Glulam (Glue-Laminated Timber)
Application
Wood Building Systems
Trusses

Tall Timber Buildings—A Preliminary Study of Wind-Induced Vibrations of a 22-Storey Building

https://research.thinkwood.com/en/permalink/catalogue2356
Year of Publication
2016
Topic
Wind
Material
CLT (Cross-Laminated Timber)
Glulam (Glue-Laminated Timber)
Application
Wood Building Systems
Author
Johansson, Marie
Linderholt, Andreas
Jarnerö, Kirsi
Landel, Pierre
Year of Publication
2016
Country of Publication
Austria
Format
Conference Paper
Material
CLT (Cross-Laminated Timber)
Glulam (Glue-Laminated Timber)
Application
Wood Building Systems
Topic
Wind
Keywords
Deflection
Dynamic Properties
Stabilisation
Sway
Wind Loads
Tall Timber
Language
English
Conference
World Conference on Timber Engineering
Research Status
Complete
Summary
During the last years the interest in multi-storey timber buildings has increased and several medium-to high-rise buildings with light-weight timber structures have been designed and built. Examples of such are the 8-storey building “Limnologen” in Växjö, Sweden, the 9-storey “Stadthouse” in London, UK and the 14-storey building “Treet” in Bergen, Norway. The structures are all light-weight and flexible timber structures which raise questions regarding wind induced vibrations. This paper will present a finite element-model of a 22 storey building with a glulam-CLT structure. The model will be used to study the effect of different structural properties such as damping, mass and stiffness on the peak acceleration and will be compared to the ISO 10137 vibration criteria for human comfort. The results show that it is crucial to take wind-induced vibrations into account in the design of tall timber buildings.
Online Access
Free
Resource Link
Less detail

Tall Timber Buildings - A Preliminary Study of Wind-Induced Vibrations of a 22-Storey Building

https://research.thinkwood.com/en/permalink/catalogue1662
Year of Publication
2016
Topic
Wind
Mechanical Properties
Material
CLT (Cross-Laminated Timber)
Glulam (Glue-Laminated Timber)
Application
Wood Building Systems
Author
Johansson, Marie
Linderholt, Andreas
Jarnerö, Kirsi
Landel, Pierre
Year of Publication
2016
Country of Publication
Austria
Format
Conference Paper
Material
CLT (Cross-Laminated Timber)
Glulam (Glue-Laminated Timber)
Application
Wood Building Systems
Topic
Wind
Mechanical Properties
Keywords
Finite Element Model
Damping
Mass
Stiffness
Peak Acceleration
Language
English
Conference
World Conference on Timber Engineering
Research Status
Complete
Notes
August 22-25, 2016, Vienna, Austria p. 3657-3664
Summary
During the last years the interest in multi-storey timber buildings has increased and several medium-tohigh-rise buildings with light-weight timber structures have been designed and built. Examples of such are the 8-storey building “Limnologen” in Växjö, Sweden, the 9-storey “Stadthouse” in London, UK and the 14-storey building “Treet” in Bergen, Norway. The structures are all light-weight and flexible timber structures which raise questions regarding wind induced vibrations. This paper will present a finite element-model of a 22 storey building with a glulam-CLT structure. The model will be used to study the effect of different structural properties such as damping, mass and stiffness on the peak acceleration and will be compared to the ISO 10137 vibration criteria for human comfort. The results show that it is crucial to take wind-induced vibrations into account in the design of tall timber buildings.
Online Access
Free
Resource Link
Less detail