This report represents the results of the activities performed in working group 1, Basis of Design. The most important task of working group 1 was the defragmentation and harmonization of techniques and methods that are necessary to prove the reliable, safe and economic application of timber materials or products in the construction industry.
This report is structured into five parts. At first general principles regarding the design formats are addressed (Part I). Afterwords timber specific aspects regarding code calibration (Part II) and serviceability (Part III) are summarized. In Part IV other demanding issues for the implementation into Eurocode 5 are addressed. Here also summaries of joint activities with other working groups on cross laminated timber and timber connections are presented. The report concludes with a guideline for data analysis (Part V).
This paper discusses the design principles of timber connections for ductility with focus on laterally-loaded dowel-type fasteners. Timber connections are critical components of timber structures: not only do they join members, but they also affect load capacity, stiffness, and ductility of the overall system. Moreover, due to the brittle failure behaviour of timber when loaded in tension or shear, they are often the only source of ductility and energy dissipation in the structure in case of overloading, much like a fuse in an electrical circuit.
This paper addresses current challenges in connection design for ductility, reviews selected best-practice design approaches to ensure ductility in timber connections, suggests simple performance-based design criteria to design connections for ductility, and aims to stimulate a discussion around potential solutions to implement safe design principles for ductile connections in future design codes and connection testing regimes.
This state-of-the-art report has been prepared within COST Action FP1402 Basis of structural timber design from research to standards, Working Group 3 Connections. The Action was established to create an expert network that is able to develop and establish the specific information needed for standardization committee decisions. Its main objective is to overcome the gap between broadly available scientific results and the specific information needed by standardization committees. This necessitates an expert network that links practice with research, i.e. technological developments with scientific background. COST presents the ideal basis to foster this type of joint effort. Chapter 8 Connections presents an integral part of Eurocode 5 and is in need of revision. This state-of-the-art report shall provide code writers with background information necessary for the development of the so-called Second Generation of the Eurocodes, now aimed to be produced in 2022.
With the ever-increasing popularity of engineered wood products, larger and more complex structures made of timber have been built, such as new tall timber buildings of unprecedented height. Designing for structural robustness in tall timber buildings is still not well understood due the complex properties of timber and the difficulty in testing large assemblies, making the prediction of tall timber building behaviour under damage very difficult. This paper discusses briefly the existing state-of-the-art and suggests the next step in considering robustness holistically. Qualitatively, this is done by introducing the concept of scale, that is to consider robustness at multiple levels within a structure: in the whole structure, compartments, components, connections, connectors, and material. Additionally, considering both local and global exposures is key in coming up with a sound conceptual design. Quantitatively, the method to calculate the robustness index in a building is presented. A novel framework to quantify robustness and find the optimal structural solution is presented, based on the calculation of the scenario probability-weighted average robustness indices of various design options of a building. A case study example is also presented in the end.
Knowledge on the short and long term deformation behavior of highly loaded components in tall timber buildings is important in view of improving future design possibilities with respect to serviceability, both in the construction and in the operational state. In this paper, we present the results of a monitoring case-study on a tall timber-hybrid building in Switzerland, a 15 storey and 60 m high office building completed in 2019. A fibre-optic measuring system showed an increase of the deformation with increasing load during the construction phase of highly stressed spruce-GLT and beech-LVL columns. However, the highest strain values were not reported in the columns themselves but at the ceiling transitions and in the area near their supports. The measurements on the columns were compared with model calculations for long-term deformation of timber elements in order to differentiate single components of the total deformation caused by load, time, and changes in climate during the construction. Over a monitoring period of a year, good agreement of the modelled deformations could be confirmed, which indicates that such models could be well suited for future usage in serviceability design of tall timber buildings.
Norway spruce glulam beams with artificial horizontal slits of different length and depth were reinforced using self-tapping screws and threaded steel rods in order to restore their load-carrying capacity and stiffness. The study aimed at evaluating the effects of strength and stiffness of the applied reinforcing elements on the load-carrying capacity and stiffness of glulam beams after retrofitting. Self-tapping screws and threaded steel rods of different diameter have been evaluated in the study and different numbers of reinforcing elements have been applied. Shear failure of the beams with artificial slits of different depth was provoked in loading cycles with stepwise installation of the reinforcing elements in the beam parts failed in the preceding test. The reinforcing effect of the tested self-tapping screws and threaded steel rods reached and partly exceeded the estimated level calculated with selected analytical models. Unfavourable structural behaviour arose in some cases from crack opening during installation of the rods causing a very low initial stiffness. Comparison of test results to calculations of stiffness and load-carrying capacity of the reinforced beams applying the -method, the shear analogy method and a truss model revealed that the -method and the shear analogy method provided the best estimates of strength / stiffness of the reinforced beams.
In this thesis the reliability of the design of unreinforced notched beams is evaluated and recommendations for the design of reinforced notched beams are given. The review of design approaches for reinforced notched beams shows, that so far the reinforcement is designed only with regard to the perpendicular to grain force acting in the notch corner. The evaluation of test results from literature shows that a stiff reinforcement has the best reinforcing effect but initial cracking cannot be prevented. The failure behaviour of the reinforced notch is studied in more detail by means of experiments and a FE model. Initial cracking of the reinforced notch comes along with crack opening, whereas ultimate failure with excessive crack growth is accompanied by shearing of the crack. An analytical model is presented for the description of the structural behaviour of reinforced notched beams. The parallel and perpendicular to the grain stiffness of the reinforcement is accounted for in the model. A high stiffness of the reinforcement parallel to the grain is required in order to reduce the mode 1 loading of the notch corner and to prevent initial cracking. The mode 2 loading of the crack increases with increasing crack length. In order to achieve higher load-carrying capacities for notched beams with longer cracks, reinforcement with high stiffness parallel to the grain is required. Recommendations are given for the required reinforcement of notched beams in order to restore the shear capacity of the reduced cross-section.