Skip header and navigation

7 records – page 1 of 1.

Basis of Design Principles for Timber Structures

https://research.thinkwood.com/en/permalink/catalogue1939
Year of Publication
2018
Topic
Serviceability
Design and Systems
Material
CLT (Cross-Laminated Timber)
Author
Abeysekera, Ishan
Baravalle, Michele
Brandner, Reinhard
Colling, François
Fink, Gerhard
Hamm, Patricia
Hochreiner, Georg
Honfi, Dániel
Ilharco, Tiago
Jockwer, Robert
Kleinhenz, Miriam
Kohler, Jochen
Lawrence, Andrew
Marcroft, Julian
Mikoschek, Michael
Toratti, Tomi
Editor
Fink, Gerhard
Honfi, Dániel
Kohler, Jochen
Dietsch, Philipp
Publisher
COST (European Cooperation in Science and Technology)
Year of Publication
2018
Format
Book/Guide
Material
CLT (Cross-Laminated Timber)
Topic
Serviceability
Design and Systems
Keywords
Eurocode
Deflection
Vibrations
Serviceability Limit States
Eurocode 5
Dowel Type Fastener
Failure Behavior
Research Status
Complete
Summary
This report represents the results of the activities performed in working group 1, Basis of Design. The most important task of working group 1 was the defragmentation and harmonization of techniques and methods that are necessary to prove the reliable, safe and economic application of timber materials or products in the construction industry. This report is structured into five parts. At first general principles regarding the design formats are addressed (Part I). Afterwords timber specific aspects regarding code calibration (Part II) and serviceability (Part III) are summarized. In Part IV other demanding issues for the implementation into Eurocode 5 are addressed. Here also summaries of joint activities with other working groups on cross laminated timber and timber connections are presented. The report concludes with a guideline for data analysis (Part V).
Online Access
Free
Resource Link
Less detail

Designing timber connections for ductility – A review and discussion

https://research.thinkwood.com/en/permalink/catalogue2949
Year of Publication
2021
Topic
Connections
Application
Wood Building Systems
Author
Ottenhaus, Lisa-Mareike
Jockwer, Robert
Drimmelen, David
Crews, Keith
Organization
The University of Queensland
Chalmers University of Technology
Publisher
Elsevier
Year of Publication
2021
Format
Journal Article
Application
Wood Building Systems
Topic
Connections
Keywords
Ductility
Design Codes
Performance-based Design
Research Status
Complete
Series
Construction and Building Materials
Summary
This paper discusses the design principles of timber connections for ductility with focus on laterally-loaded dowel-type fasteners. Timber connections are critical components of timber structures: not only do they join members, but they also affect load capacity, stiffness, and ductility of the overall system. Moreover, due to the brittle failure behaviour of timber when loaded in tension or shear, they are often the only source of ductility and energy dissipation in the structure in case of overloading, much like a fuse in an electrical circuit. This paper addresses current challenges in connection design for ductility, reviews selected best-practice design approaches to ensure ductility in timber connections, suggests simple performance-based design criteria to design connections for ductility, and aims to stimulate a discussion around potential solutions to implement safe design principles for ductile connections in future design codes and connection testing regimes.
Online Access
Free
Resource Link
Less detail

Design of Connections in Timber Structures

https://research.thinkwood.com/en/permalink/catalogue1937
Year of Publication
2018
Topic
Connections
Design and Systems
Material
CLT (Cross-Laminated Timber)
Author
Bader, Thomas
Blaß, Hans Joachim
Bocquet, Jean-François
Branco, Jorge
Brandner, Reinhard
Manuel Cabrero, José
de Proft, Kurt
Descamps, Thierry
Dietsch, Philipp
Franke, Bettina
Franke, Steffen
Görlacher, Rainer
Jockwer, Robert
Jorissen, André
Kleiber, Marion
Lemaître, Romain
Munch-Andersen, Jørgen
Pazlar, Tomaž
Ranasinghe, Keerthi
Ringhofer, Andreas
Sandhaas, Carmen
Schweigler, Michael
Stepinac, Mislav
Tuhkanen, Eero
Verbist, Maxime
Yurrita, Miguel
Editor
Sandhaas, Carmen
Munch-Andersen, Jørgen
Dietsch, Philipp
Publisher
COST (European Cooperation in Science and Technology)
Year of Publication
2018
Format
Book/Guide
Material
CLT (Cross-Laminated Timber)
Topic
Connections
Design and Systems
Keywords
Eurocode 5
Fasteners
Screws
Dowel Type Fastener
Glued-In Rods
Numerical Modeling
Europe
Load Distribution
Research Status
Complete
Summary
This state-of-the-art report has been prepared within COST Action FP1402 Basis of structural timber design from research to standards, Working Group 3 Connections. The Action was established to create an expert network that is able to develop and establish the specific information needed for standardization committee decisions. Its main objective is to overcome the gap between broadly available scientific results and the specific information needed by standardization committees. This necessitates an expert network that links practice with research, i.e. technological developments with scientific background. COST presents the ideal basis to foster this type of joint effort. Chapter 8 Connections presents an integral part of Eurocode 5 and is in need of revision. This state-of-the-art report shall provide code writers with background information necessary for the development of the so-called Second Generation of the Eurocodes, now aimed to be produced in 2022.
Online Access
Free
Resource Link
Less detail

A holistic framework for designing for structural robustness in tall timber buildings

https://research.thinkwood.com/en/permalink/catalogue2853
Year of Publication
2021
Topic
Design and Systems
Material
Other Materials
Application
Wood Building Systems
Author
Voulpiotis, Konstantinos
Köhler, Jochen
Jockwer, Robert
Frangi, Andrea
Organization
ETH Zurich
National Technical University of Norway
Chalmers University of Technology
Publisher
Elsevier
Year of Publication
2021
Format
Journal Article
Material
Other Materials
Application
Wood Building Systems
Topic
Design and Systems
Keywords
Robustness
Tall Timber Buildings
Disproportionate Collapse
Reliability
System Effects
Research Status
Complete
Series
Engineering Structures
Summary
With the ever-increasing popularity of engineered wood products, larger and more complex structures made of timber have been built, such as new tall timber buildings of unprecedented height. Designing for structural robustness in tall timber buildings is still not well understood due the complex properties of timber and the difficulty in testing large assemblies, making the prediction of tall timber building behaviour under damage very difficult. This paper discusses briefly the existing state-of-the-art and suggests the next step in considering robustness holistically. Qualitatively, this is done by introducing the concept of scale, that is to consider robustness at multiple levels within a structure: in the whole structure, compartments, components, connections, connectors, and material. Additionally, considering both local and global exposures is key in coming up with a sound conceptual design. Quantitatively, the method to calculate the robustness index in a building is presented. A novel framework to quantify robustness and find the optimal structural solution is presented, based on the calculation of the scenario probability-weighted average robustness indices of various design options of a building. A case study example is also presented in the end.
Online Access
Free
Resource Link
Less detail

Long-term deformation behaviour of timber columns: Monitoring of a tall timber building in Switzerland

https://research.thinkwood.com/en/permalink/catalogue2881
Year of Publication
2021
Topic
Serviceability
Material
Glulam (Glue-Laminated Timber)
LVL (Laminated Veneer Lumber)
Application
Columns
Author
Jockwer, Robert
Grönquist, Philippe
Frangi, Andrea
Organization
Chalmers University of Technology
ETH Zurich
Publisher
Elsevier
Year of Publication
2021
Format
Journal Article
Material
Glulam (Glue-Laminated Timber)
LVL (Laminated Veneer Lumber)
Application
Columns
Topic
Serviceability
Keywords
Creep
Rheological Material Behaviour
Long-term Behaviour
Research Status
Complete
Series
Engineering Structures
Summary
Knowledge on the short and long term deformation behavior of highly loaded components in tall timber buildings is important in view of improving future design possibilities with respect to serviceability, both in the construction and in the operational state. In this paper, we present the results of a monitoring case-study on a tall timber-hybrid building in Switzerland, a 15 storey and 60 m high office building completed in 2019. A fibre-optic measuring system showed an increase of the deformation with increasing load during the construction phase of highly stressed spruce-GLT and beech-LVL columns. However, the highest strain values were not reported in the columns themselves but at the ceiling transitions and in the area near their supports. The measurements on the columns were compared with model calculations for long-term deformation of timber elements in order to differentiate single components of the total deformation caused by load, time, and changes in climate during the construction. Over a monitoring period of a year, good agreement of the modelled deformations could be confirmed, which indicates that such models could be well suited for future usage in serviceability design of tall timber buildings.
Online Access
Free
Resource Link
Less detail

Performance of Self-Tapping Screws and Threaded Steel Rods in Shear Reinforcement of Glulam Beams

https://research.thinkwood.com/en/permalink/catalogue1628
Year of Publication
2016
Topic
Connections
Mechanical Properties
Material
Glulam (Glue-Laminated Timber)
Application
Beams
Author
Jockwer, Robert
Steiger, René
Year of Publication
2016
Format
Conference Paper
Material
Glulam (Glue-Laminated Timber)
Application
Beams
Topic
Connections
Mechanical Properties
Keywords
Norway Spruce
Reinforcement
Self-Tapping Screws
Threaded Steel Rod
Stiffness
Strength
Load Carrying Capacity
Conference
World Conference on Timber Engineering
Research Status
Complete
Notes
August 22-25, 2016, Vienna, Austria p. 2813-2822
Summary
Norway spruce glulam beams with artificial horizontal slits of different length and depth were reinforced using self-tapping screws and threaded steel rods in order to restore their load-carrying capacity and stiffness. The study aimed at evaluating the effects of strength and stiffness of the applied reinforcing elements on the load-carrying capacity and stiffness of glulam beams after retrofitting. Self-tapping screws and threaded steel rods of different diameter have been evaluated in the study and different numbers of reinforcing elements have been applied. Shear failure of the beams with artificial slits of different depth was provoked in loading cycles with stepwise installation of the reinforcing elements in the beam parts failed in the preceding test. The reinforcing effect of the tested self-tapping screws and threaded steel rods reached and partly exceeded the estimated level calculated with selected analytical models. Unfavourable structural behaviour arose in some cases from crack opening during installation of the rods causing a very low initial stiffness. Comparison of test results to calculations of stiffness and load-carrying capacity of the reinforced beams applying the -method, the shear analogy method and a truss model revealed that the -method and the shear analogy method provided the best estimates of strength / stiffness of the reinforced beams.
Online Access
Free
Resource Link
Less detail

Structural Behaviour of Glued Laminated Timber Beams with Unreinforced and Reinforced Notches

https://research.thinkwood.com/en/permalink/catalogue311
Year of Publication
2014
Topic
Mechanical Properties
Material
Glulam (Glue-Laminated Timber)
Application
Beams
Author
Jockwer, Robert
Organization
ETH Zurich
Year of Publication
2014
Format
Thesis
Material
Glulam (Glue-Laminated Timber)
Application
Beams
Topic
Mechanical Properties
Keywords
Finite Element Model
Load Carrying Capacity
notch
Monte Carlo
Failure Behavior
Research Status
Complete
Summary
In this thesis the reliability of the design of unreinforced notched beams is evaluated and recommendations for the design of reinforced notched beams are given. The review of design approaches for reinforced notched beams shows, that so far the reinforcement is designed only with regard to the perpendicular to grain force acting in the notch corner. The evaluation of test results from literature shows that a stiff reinforcement has the best reinforcing effect but initial cracking cannot be prevented. The failure behaviour of the reinforced notch is studied in more detail by means of experiments and a FE model. Initial cracking of the reinforced notch comes along with crack opening, whereas ultimate failure with excessive crack growth is accompanied by shearing of the crack. An analytical model is presented for the description of the structural behaviour of reinforced notched beams. The parallel and perpendicular to the grain stiffness of the reinforcement is accounted for in the model. A high stiffness of the reinforcement parallel to the grain is required in order to reduce the mode 1 loading of the notch corner and to prevent initial cracking. The mode 2 loading of the crack increases with increasing crack length. In order to achieve higher load-carrying capacities for notched beams with longer cracks, reinforcement with high stiffness parallel to the grain is required. Recommendations are given for the required reinforcement of notched beams in order to restore the shear capacity of the reduced cross-section.
Online Access
Free
Resource Link
Less detail

7 records – page 1 of 1.