Skip header and navigation

5 records – page 1 of 1.

Building Higher with Light-Weight Timber Structures: The Effect of Wind Induced Vibrations

https://research.thinkwood.com/en/permalink/catalogue89
Year of Publication
2015
Topic
Acoustics and Vibration
Wind
Material
CLT (Cross-Laminated Timber)
Light Frame (Lumber+Panels)
Glulam (Glue-Laminated Timber)
Application
Wood Building Systems
Author
Johansson, Marie
Linderholt, Andreas
Bolmsvik, Åsa
Jarnerö, Kirsi
Olsson, Jörgen
Reynolds, Thomas
Organization
Inter-noise
Year of Publication
2015
Format
Conference Paper
Material
CLT (Cross-Laminated Timber)
Light Frame (Lumber+Panels)
Glulam (Glue-Laminated Timber)
Application
Wood Building Systems
Topic
Acoustics and Vibration
Wind
Keywords
Mid-Rise
High-Rise
Vibration Properties
Conference
Inter-noise 2015
Research Status
Complete
Notes
August 9-12, 2015, San Francisco, California, USA
Summary
During the last years the interest in multi-storey timber buildings has increased and several medium-to-high-rise buildings with light-weight timber structure have been designed and built. Examples of such are the 8-storey building Limnologen in Växjö, Sweden, the 9- storey Stadthaus in London, UK and being constructed at the moment, the 14-storey building Treet in Bergen, Norway. These are all light-weight and flexible structures which raise questions regarding the wind induced vibrations. For the building in Norway, the calculated vibration properties of the top floor are on the limit of being acceptable according to the ISO 101371 vibration criteria for human comfort. This paper will give a review of building systems for medium-to-high-rise timber buildings. Measured vibration properties for some medium-to-high-rise timber buildings will also be presented. These data have been used for calculating the peak acceleration values for two example buildings for comparison with the ISO standards. An analysis of the acceleration levels for a building with double the height has also been performed showing that designing for wind induced vibrations in higher timber buildings is going to be very important and that more research into this area is needed.
Online Access
Free
Resource Link
Less detail

Effect of Flexible Supports on Vibration Performance of Timber Floors

https://research.thinkwood.com/en/permalink/catalogue190
Year of Publication
2012
Topic
Acoustics and Vibration
Material
CLT (Cross-Laminated Timber)
Glulam (Glue-Laminated Timber)
Application
Floors
Author
Jarnerö, Kirsi
Bolmsvik, Åsa
Brandt, Anders
Olsson, Anders
Organization
Euronoise
Year of Publication
2012
Format
Conference Paper
Material
CLT (Cross-Laminated Timber)
Glulam (Glue-Laminated Timber)
Application
Floors
Topic
Acoustics and Vibration
Keywords
Residential
Multi-Storey
Noise
Prefabrication
In Situ
Vibration
Damping
Interlayer
Conference
Ninth European Conference on Noise Control (Euronoise)
Research Status
Complete
Notes
June 10-13, 2012, Prague, Czech Republic
Summary
In residential multi-storey buildings of timber it is of great importance to reduce the flanking transmission of noise. Some building systems do this by installing a vibration-damping elastic interlayer, Sylomer or Sylodyn , in the junction between the support and the floor structure. This interlayer also improves the floor vibration performance by adding damping to the structure. In the present work the vibration performance of a floor with such interlayers has been investigated both in laboratory and field tests. A prefabricated timber floor element was tested in laboratory on rigid supports and on supports with four different types of interlayers. The results are compared with in situ tests on a copy of the same floor element. The effect on vibration performance i.e. frequencies, damping ratio and mode shapes is studied. A comparison of the in situ test and the test with elastic interlayer in laboratory shows that the damping in situ is approximately three times higher than on a single floor element in the lab. This indicates that the damping in situ is affected be the surrounding building structure. The achieved damping ratio is highly dependent on the mode shapes. Mode shapes that have high mode shape coefficients along the edges where the interlayer material is located, result in higher modal damping ratios. The impulse velocity response, that is used to evaluate the vibration performance and rate experienced annoyance in the design of wooden joist floors, seems to be reduced when adding elastic layers at the supports.
Online Access
Free
Resource Link
Less detail

Tall Timber Buildings—A Preliminary Study of Wind-Induced Vibrations of a 22-Storey Building

https://research.thinkwood.com/en/permalink/catalogue2356
Year of Publication
2016
Topic
Wind
Material
CLT (Cross-Laminated Timber)
Glulam (Glue-Laminated Timber)
Application
Wood Building Systems
Author
Johansson, Marie
Linderholt, Andreas
Jarnerö, Kirsi
Landel, Pierre
Year of Publication
2016
Format
Conference Paper
Material
CLT (Cross-Laminated Timber)
Glulam (Glue-Laminated Timber)
Application
Wood Building Systems
Topic
Wind
Keywords
Deflection
Dynamic Properties
Stabilisation
Sway
Wind Loads
Tall Timber
Conference
World Conference on Timber Engineering
Research Status
Complete
Summary
During the last years the interest in multi-storey timber buildings has increased and several medium-to high-rise buildings with light-weight timber structures have been designed and built. Examples of such are the 8-storey building “Limnologen” in Växjö, Sweden, the 9-storey “Stadthouse” in London, UK and the 14-storey building “Treet” in Bergen, Norway. The structures are all light-weight and flexible timber structures which raise questions regarding wind induced vibrations. This paper will present a finite element-model of a 22 storey building with a glulam-CLT structure. The model will be used to study the effect of different structural properties such as damping, mass and stiffness on the peak acceleration and will be compared to the ISO 10137 vibration criteria for human comfort. The results show that it is crucial to take wind-induced vibrations into account in the design of tall timber buildings.
Online Access
Free
Resource Link
Less detail

Tall Timber Buildings - A Preliminary Study of Wind-Induced Vibrations of a 22-Storey Building

https://research.thinkwood.com/en/permalink/catalogue1662
Year of Publication
2016
Topic
Wind
Mechanical Properties
Material
CLT (Cross-Laminated Timber)
Glulam (Glue-Laminated Timber)
Application
Wood Building Systems
Author
Johansson, Marie
Linderholt, Andreas
Jarnerö, Kirsi
Landel, Pierre
Year of Publication
2016
Format
Conference Paper
Material
CLT (Cross-Laminated Timber)
Glulam (Glue-Laminated Timber)
Application
Wood Building Systems
Topic
Wind
Mechanical Properties
Keywords
Finite Element Model
Damping
Mass
Stiffness
Peak Acceleration
Conference
World Conference on Timber Engineering
Research Status
Complete
Notes
August 22-25, 2016, Vienna, Austria p. 3657-3664
Summary
During the last years the interest in multi-storey timber buildings has increased and several medium-tohigh-rise buildings with light-weight timber structures have been designed and built. Examples of such are the 8-storey building “Limnologen” in Växjö, Sweden, the 9-storey “Stadthouse” in London, UK and the 14-storey building “Treet” in Bergen, Norway. The structures are all light-weight and flexible timber structures which raise questions regarding wind induced vibrations. This paper will present a finite element-model of a 22 storey building with a glulam-CLT structure. The model will be used to study the effect of different structural properties such as damping, mass and stiffness on the peak acceleration and will be compared to the ISO 10137 vibration criteria for human comfort. The results show that it is crucial to take wind-induced vibrations into account in the design of tall timber buildings.
Online Access
Free
Resource Link
Less detail

Vibration Properties of a Timber Floor Assessed in Laboratory and During Construction

https://research.thinkwood.com/en/permalink/catalogue488
Year of Publication
2015
Topic
Acoustics and Vibration
Material
CLT (Cross-Laminated Timber)
Application
Floors
Author
Jarnerö, Kirsi
Brandt, Anders
Olsson, Anders
Publisher
ScienceDirect
Year of Publication
2015
Format
Journal Article
Material
CLT (Cross-Laminated Timber)
Application
Floors
Topic
Acoustics and Vibration
Keywords
Damping Ratios
Eurocode
Mode shape
Natural Frequency
Prefabrication
Boundary Conditions
Research Status
Complete
Series
Engineering Structures
Summary
In the present work the change in natural frequencies, damping and mode shapes of a prefabricated timber floor element have been investigated when it was integrated into a building structure. The timber floor element was first subjected to modal testing in laboratory with ungrounded and simply supported boundary conditions, and then in situ at different stages of building construction. The first five natural frequencies, damping ratios and mode shapes of the floor element and the entire floor were extracted and analysed. It may be concluded that the major change in natural frequencies occur as the floor element is coupled to the adjacent elements and when partitions are built in the studied room, the largest effect is on those modes of vibration that largely are constrained in their movement. The in situ conditions have a great influence on the damping, which depends on the damping characteristics of the supports, but also on the fact that the floor is integrated into the building and interacts with it. There is a slight increase of damping in the floor over the different construction stages and the damping values seem to decrease with ascending mode order.
Online Access
Free
Resource Link
Less detail