Skip header and navigation

4 records – page 1 of 1.

Building Higher with Light-Weight Timber Structures: The Effect of Wind Induced Vibrations

https://research.thinkwood.com/en/permalink/catalogue89
Year of Publication
2015
Topic
Acoustics and Vibration
Wind
Material
CLT (Cross-Laminated Timber)
Light Frame (Lumber+Panels)
Glulam (Glue-Laminated Timber)
Application
Wood Building Systems
Author
Johansson, Marie
Linderholt, Andreas
Bolmsvik, Åsa
Jarnerö, Kirsi
Olsson, Jörgen
Reynolds, Thomas
Organization
Inter-noise
Year of Publication
2015
Country of Publication
United States
Format
Conference Paper
Material
CLT (Cross-Laminated Timber)
Light Frame (Lumber+Panels)
Glulam (Glue-Laminated Timber)
Application
Wood Building Systems
Topic
Acoustics and Vibration
Wind
Keywords
Mid-Rise
High-Rise
Vibration Properties
Language
English
Conference
Inter-noise 2015
Research Status
Complete
Notes
August 9-12, 2015, San Francisco, California, USA
Summary
During the last years the interest in multi-storey timber buildings has increased and several medium-to-high-rise buildings with light-weight timber structure have been designed and built. Examples of such are the 8-storey building Limnologen in Växjö, Sweden, the 9- storey Stadthaus in London, UK and being constructed at the moment, the 14-storey building Treet in Bergen, Norway. These are all light-weight and flexible structures which raise questions regarding the wind induced vibrations. For the building in Norway, the calculated vibration properties of the top floor are on the limit of being acceptable according to the ISO 101371 vibration criteria for human comfort. This paper will give a review of building systems for medium-to-high-rise timber buildings. Measured vibration properties for some medium-to-high-rise timber buildings will also be presented. These data have been used for calculating the peak acceleration values for two example buildings for comparison with the ISO standards. An analysis of the acceleration levels for a building with double the height has also been performed showing that designing for wind induced vibrations in higher timber buildings is going to be very important and that more research into this area is needed.
Online Access
Free
Resource Link
Less detail

Direct Impact Sound Insulation of Cross Laminate Timber Floors with and without Toppings

https://research.thinkwood.com/en/permalink/catalogue227
Year of Publication
2014
Topic
Acoustics and Vibration
Material
CLT (Cross-Laminated Timber)
Application
Floors
Author
Zeitler, Berndt
Schoenwald, Stefan
Sabourin, Ivan
Organization
Inter-noise
Year of Publication
2014
Country of Publication
Australia
Format
Conference Paper
Material
CLT (Cross-Laminated Timber)
Application
Floors
Topic
Acoustics and Vibration
Keywords
North America
Sound Insulation
Concrete Topping
Interlayer
Language
English
Conference
Inter-Noise 2014
Research Status
Complete
Notes
November 16-19, 2014, Melbourne, Australia
Summary
Cross Laminated Timber (CLT), which is well suited for construction of tall buildings, is becoming a more popular construction material in North America. However, to ensure comfortable living conditions, sound insulation measures are necessary. The study presented here compares results of direct impact sound insulation of 5- and 7-ply CLT floors covered with different a concrete toppings on various interlayers. Improvements of up to 21dB in Weighted Normalized Impact Sound Pressure Level (Ln,w) were observed using a newly proposed reference floor for CLTs. Furthermore, the improvements of floor coverings on CLT floors are compared to those achieved on other types of construction, such as the reference concrete floor. The improvements of Ln,w tend to be higher on the concrete floors than on the CLT floors tested. These and other findings will be presented.
Online Access
Free
Resource Link
Less detail

In Situ Measured Flanking Transmission in Light Weight Timber Houses with Elastic Flanking Isolators

https://research.thinkwood.com/en/permalink/catalogue231
Year of Publication
2013
Topic
Acoustics and Vibration
Material
CLT (Cross-Laminated Timber)
Application
Floors
Wood Building Systems
Author
Ågren, Anders
Ljunggren, Fredrik
Organization
Inter-noise
Year of Publication
2013
Country of Publication
Austria
Format
Conference Paper
Material
CLT (Cross-Laminated Timber)
Application
Floors
Wood Building Systems
Topic
Acoustics and Vibration
Keywords
Modules
Prefabrication
Sound Insulation
Elastomer Isolators
Language
English
Conference
Inter-noise 2013
Research Status
Complete
Notes
September 15-18, 2013, Innsbruck, Austria
Summary
There is a strong trend to industrially produce multi-storey light weight timber based houses. This concept allows the buildings to be manufactured to a more or less prefabricated extent. Most common types are volume/room modules or flat wall and floor modules. When assembling the modules at the building site, elastomer isolators are used in several constructions to reduce flanking transmission. The sound insulation demands in the Nordic countries are relatively high and therefore the flanking transmission must be well controlled, where elastomer isolators are an alternative. Decoupled radiation isolated walls is another. There are though no working studies or mathematical models of the performance of these isolators. They are only treated as simple mass-springs systems that operate vertically, i.e. one degree of freedom. In this paper there is an analysis of experimentally data of the structure borne sound isolating performance of elastomer isolators that are separating an excited floor from receiving walls. The performance dependence of structure type is also presented. An empirically based regression model of the vibration level difference is derived. The model is based on measurements of six elastomer field installations, which are compared to five comparable installations without elastomers. A goal is that the model can be used for input in future SEN prediction models for modeling of sound insulation.
Online Access
Free
Resource Link
Less detail

Sound Insulation Performance of Cross Laminated Timber Building Systems

https://research.thinkwood.com/en/permalink/catalogue342
Year of Publication
2013
Topic
Acoustics and Vibration
Material
CLT (Cross-Laminated Timber)
Application
Wood Building Systems
Author
Schoenwald, Stefan
Zeitler, Berndt
Sabourin, Ivan
King, Frances
Organization
Inter-noise
Year of Publication
2013
Country of Publication
Austria
Format
Conference Paper
Material
CLT (Cross-Laminated Timber)
Application
Wood Building Systems
Topic
Acoustics and Vibration
Keywords
Airborne Sound Insulation
Acoustic Performance
Language
English
Conference
Inter-noise 2013
Research Status
Complete
Notes
September 15-18, 2013, Innsbruck, Austria
Summary
In recent years Cross Laminated Timber (CLT) was introduced as an emerging building system in the North American market. CLT elements consist of multiple layers of wooden beams that are laid-out cross-wise and laminated together to form solid wood panels for floors and walls. As part of a multi-disciplinary research project a comprehensive study was conducted on the impact and airborne sound insulation of this type of elements in order to create a data base that allows building designers to predict the acoustic performance of CLT systems. Parametric studies were carried out on the direct impact airborne sound insulation of CLT floor assemblies (with/ without various floor topping and gypsum board ceiling variants), on the direct airborne sound insulation of CLT walls (with/without gypsum board linings), as well as on the structure-borne sound transmission on a series of CLT building junctions. The results were then used as input data for predictions of the apparent impact and airborne sound insulation in real CLT buildings using the ISO 15712 (EN12354) framework that was originally developed for concrete and masonry buildings. The paper presents the prediction approach as well as results of prediction and measurement series for apparent impact and airborne sound insulation.
Online Access
Free
Resource Link
Less detail