Skip header and navigation

3 records – page 1 of 1.

A Comparison of the Energy Saving and Carbon Reduction Performance between Reinforced Concrete and Cross-Laminated Timber Structures in Residential Buildings in the Severe Cold Region of China

https://research.thinkwood.com/en/permalink/catalogue1207
Year of Publication
2017
Topic
Energy Performance
Environmental Impact
Material
CLT (Cross-Laminated Timber)
Application
Wood Building Systems
Author
Guo, Haibo
Liu, Ying
Meng, Yiping
Huang, Haoyu
Sun, Cheng
Shao, Yu
Publisher
MDPI
Year of Publication
2017
Format
Journal Article
Material
CLT (Cross-Laminated Timber)
Application
Wood Building Systems
Topic
Energy Performance
Environmental Impact
Keywords
Energy Consumption
Carbon Emissions
Residential
Severe Cold Regions
Simulation
Reinforced Concrete
Life-Cycle Assessment
Research Status
Complete
Series
Sustainability
Summary
This paper aims to investigate the energy saving and carbon reduction performance of cross-laminated timber residential buildings in the severe cold region of China through a computational simulation approach. The authors selected Harbin as the simulation environment, designed reference residential buildings with different storeys which were constructed using reinforced concrete (RC) and cross-laminated timber (CLT) systems, then simulated the energy performance using the commercial software IESTM and finally made comparisions between the RC and CLT buildings. The results show that the estimated energy consumption and carbon emissions for CLT buildings are 9.9% and 13.2% lower than those of RC buildings in view of life-cycle assessment. This indicates that the CLT construction system has good potential for energy saving when compared to RC in the severe cold region of China. The energy efficiency of residential buildings is closely related to the height for both RC and CLT buildings. In spite of the higher cost of materials for high-rise buildings, both RC and CLT tall residential buildings have better energy efficiency than low-rise and mid-rise buildings in the severe cold region of China.
Online Access
Free
Resource Link
Less detail

Experimental Tests on a Dowel-Type Timber Connection and Validation of Numerical Models

https://research.thinkwood.com/en/permalink/catalogue2897
Year of Publication
2017
Topic
Mechanical Properties
Material
Glulam (Glue-Laminated Timber)
Application
Frames
Author
Solarino, Fabio
Giresini, Linda
Chang, Wen-Shao
Huang, Haoyu
Organization
University of Pisa
The University of Sheffield
Beijing University of Technology
Publisher
MDPI
Year of Publication
2017
Format
Journal Article
Material
Glulam (Glue-Laminated Timber)
Application
Frames
Topic
Mechanical Properties
Keywords
Dowel Type Fastener
Rotational Stiffness
Damping
OpenSees
Research Status
Complete
Series
Buildings
Summary
This paper examines the dynamic behaviour of timber framed buildings under wind and dynamic loads, focusing on the role of connections being experimentally tested. The main aim of this manuscript is to analyze the in-service dynamic behaviour of a semi-rigid moment-resisting dowel-type connection between timber beam and column. For this purpose, two laboratory tests have been performed, the first on a connection and another one on a portal frame. The results are used to validate a numerical model of the simple portal frame, analyzed in OpenSees. The obtained relationships are also discussed and compared with Eurocode rules. The main result is that the joint stiffness is calculated through the Eurocode (EC) formulation underestimates the experimental one. A mutual agreement is obtained between the numerical model, validated from the experimental stiffness value for the connections, and the experimental results on the portal frame.
Online Access
Free
Resource Link
Less detail

Predicting the Human-Induced Vibration of Cross Laminated Timber Floor Under Multi-Person Loadings

https://research.thinkwood.com/en/permalink/catalogue2701
Year of Publication
2021
Topic
Acoustics and Vibration
Material
CLT (Cross-Laminated Timber)
Application
Floors
Author
Wang, Chang
Chang, Wen-Shao
Yan, Weiming
Huang, Haoyu
Publisher
ScienceDirect
Year of Publication
2021
Format
Journal Article
Material
CLT (Cross-Laminated Timber)
Application
Floors
Topic
Acoustics and Vibration
Keywords
Human-Induced Vibration
Multi-Person Loadings
Numerical Modelling
Research Status
Complete
Series
Structures
Summary
The vibration of cross laminated timber (CLT) floor is closely related to human-induced loadings. However, research and prediction approaches regarding human-induced vibration of the CLT floor have been mostly limited to a single-person excitation condition. This paper presents new prediction approaches to the vibration response of the CLT floor under multi-person loadings. The effect of multi-person loadings on the vibration performance of a CLT floor was investigated through numerical modelling, experimental testing and analytical investigation. A finite element model was developed through a computational software to perform an accurate analysis of human-induced loadings. An analytical model was established to predict human-induced vibration of the CLT floor under multi-person loadings. Experimental tests were conducted to validate the numerical modelling. Results of both numerical modelling and experimental testing showed that the vibration performance of the CLT floor under multi-person loadings was almost double that under single-person loadings. Thus, multi-person activities are more likely to cause the occupants feelings of discomfort. A method for predicting the human-induced vibration of the CLT floor under multi-person loadings was then developed. The measured response, numerical modelled response, and predicted response were compared using an existing design metric, vibration dose value (VDV). The results were largely consistent. It is therefore concluded that the proposed prediction method will enable engineers to design timber floor systems that consider multi-person loadings.
Online Access
Free
Resource Link
Less detail