The research presented in this paper examines the shear resistance performance of self-tapping screws (STS) in three-ply cross-laminated timber (CLT) panels. Specifically, the feasibility of using innovative STS assemblies with double inclination of fasteners was investigated for the shear connection of CLT panels. The specimens (1.5×1.5 m) were subjected to quasi-static and reversed-cyclic loading. The tests were set up to approximate pure shear loading, with three-panel CLT assemblies connected with STS. The resulting load-displacement and hysteretic curves were used to determine an equivalent energy elastic-plastic curve to estimate assembly capacity, yield load, yield displacement, ductility ratio, stiffness, and damping. Excellent structural performance in terms of capacity and stiffness was obtained while still providing the required ductility for the system to be used in seismic applications. The average static and cyclic yield loads were 6.0 kN/screw and 5.9 kN/screw, respectively. Average static and cyclic and ductility ratios were 7.7 and 4.1, respectively, allowing the connection to be classified as highly ductile under quasi-static loading and moderately ductile under reversed cyclic loading. The data obtained allow engineers to specify an innovative connection assembly with double inclination of fasteners for lateral load–resisting systems of CLT structures.
Cross-laminated-timber (CLT) panels, when used as shear walls or diaphragms are commonly connected with multiple fasteners in a row. For such connections, it is frequently observed that the load carrying capacity of multiple-fasteners is less than the sum of the individual fastener capacities. This phenomenon is referred to as “group-effect” which is accounted for differently in contemporary timber design standards for several types of fasteners. The research presented in this paper investigated the group-effect factor for self-tapping-screw (STS) shear connections between CLT panels. Different joint types (surface splines with STS in shear, and half-lap and butt joints with STS in either shear or withdrawal) were evaluated with a total of 122 quasi-static tests. The number of STS in one row was varied (1, 2, 8, 16, and 32) with their installation satisfying minimum spacing requirements. The results demonstrated that the effect of number of screws on joint capacity can be described using the expression neff = 0.9*n. For the reduction in stiffness, neff = n0.8 can be used.
Cross-Laminated-Timber (CLT) is increasingly gaining popularity in residential and non-residential applications in North America. To use CLT as lateral load resisting system, individual panels need to be connected. In order to provide in-plane shear connections, CLT panels may be joined with a variety of options including the use of self-tapping-screws (STS) in surface splines and half-lap joints. Alternatively, STS can be installed at an angle to the plane allowing for simple butt joints and avoiding any machining. This study investigated the performance of CLT panel assemblies connected with STS under vertical shear loading. The three aforementioned options were applied to join 3ply and 5-ply CLT panels. A total of 60 mid-scale quasi-static shear tests were performed to determine and compare the connection performance in terms of strength, stiffness, and ductility. It was shown that – depending on the screw layout – either very stiff or very ductile joint performance can be achieved.
The research presented in this paper examines the performance of 3-ply and 5-ply Cross-laminated Timber (CLT) panels connected with Self-tapping Screws (STS). Different conventional joint types (surface spline with STS in shear and half-lap joints with STS in either shear or withdrawal) along with two innovative solutions were evaluated in a total of 198 quasi-static tests. The first novel assembly used STS with double inclination of fasteners in butt joints; the second was a combination of STS in withdrawal and shear in lap joints. The joint performance was evaluated in terms of capacity, stiffness, yield strength, and ductility. The results confirmed that joints with STS in shear exhibited high ductility but low stiffness, whereas joints with STS in withdrawal were found to be stiff but less ductile. Combining the shear and withdrawal action of STS led to high stiffness and high ductility.
This paper presents an experimental study to evaluate the use of spatially arranged self-tapping screws (STS) as shear connections for cross-laminated timber panels. Specifically, simple butt joints combined with crossed STS with different inclinations were investigated under quasi-static monotonic and reversed-cyclic loadings. The influence of the number and angle of insertion of screws, screws characteristics, friction and loading on the joint performance was explored. The yield load, load-carrying capacity and related slips, elastic stiffness, and ductility were evaluated considering two groups of tests performed on a total of 63 specimens of different size. Performance of connections with respect to the energy dissipation and loss of strength under cyclic loads was also investigated. It was shown that the spatial insertion angle of screws plays a key role in the performance of joints, not only because it relates to the shank to grain angle, but also because it affects the amount of wood involved in the bearing mechanism. Design models of STS connections are presented and discussed, and the test results are compared against analytical predictions. While good agreement for load-carrying capacity was obtained, the existing stiffness model seems less adequate with a consistent overestimation.