Skip header and navigation

11 records – page 1 of 2.

Ability of Finger-Jointed Lumber to Maintain Load at Elevated Temperatures

https://research.thinkwood.com/en/permalink/catalogue1832
Year of Publication
2018
Topic
Fire
Material
Other Materials
Author
Rammer, Douglas
Zelinka, Samuel
Hasburgh, Laura
Craft, Steven
Publisher
Forest Products Laboratory
Year of Publication
2018
Format
Journal Article
Material
Other Materials
Topic
Fire
Keywords
Small Scale
Full Scale
Bending Test
Melamine Formaldehyde
Phenol-Resorcinol Formaldehyde
Creep
Polyurethane
Polyvinyl Acetate
Temperature
Durability
Research Status
Complete
Series
Wood and Fiber Science. 50(1): 44-54.
Summary
This article presents a test method that was developed to screen adhesive formulations for finger-jointed lumber. The goal was to develop a small-scale test that could be used to predict whether an adhesive would pass a full-scale ASTM E119 wall assembly test. The method involved loading a 38-mm square finger-jointed sample in a four-point bending test inside of an oven with a target sample temperature of 204°C. The deformation (creep) was examined as a function of time. It was found that samples fingerjointed with melamine formaldehyde and phenol resorcinol formaldehyde adhesives had the same creep behavior as solid wood. One-component polyurethane and polyvinyl acetate adhesives could not maintain the load at the target temperature measured middepth of the sample, and several different types of creep behavior were observed before failure. This method showed that the creep performance of the onecomponent adhesives may be quite different than the performance from short-term load deformation curves collected at high temperatures. The importance of creep performance of adhesives in the fire resistance of engineered wood is discussed.
Online Access
Free
Resource Link
Less detail

Compartment Fire Testing of a Two-Story Mass Timber Building

https://research.thinkwood.com/en/permalink/catalogue1825
Year of Publication
2018
Topic
Fire
Application
Wood Building Systems
Author
Zelinka, Samuel
Hasburgh, Laura
Bourne, Keith
Tucholski, David
Ouellette, Jason
Organization
Forest Products Laboratory
Year of Publication
2018
Format
Report
Application
Wood Building Systems
Topic
Fire
Keywords
Tall Wood
Gypsum
Mass Timber
Fire Performance
Compartment Fire Test
Sprinklers
Research Status
Complete
Summary
Five full-scale fire experiments were conducted to observe the performance of a two-level apartment-style structure constructed of mass timber. Each level consisted of a one bedroom apartment, an L-shaped corridor, and a stairwell connecting the two levels. One of the primary variables considered in this test series was the amount and location of exposed mass timber. The amount of mass timber surface area protected by gypsum wallboard ranged from 100% to no protection. For each experiment, the fuel load was identical and the fire was initiated in a base cabinet in the kitchen. In the first three experiments, the fire reached flashover conditions, and subsequently underwent a cooling phase as the fuel load from combustible contents was consumed. The first three experiments were carried out for a duration of up to 4 h. In the fourth experiment, automatic fire sprinklers were installed. Sprinklers suppressed the fire automatically. In the fifth experiment, the activation of the automatic fire sprinklers was delayed by approximately 20 minutes beyond the sprinkler activation time in the fourth experiment to simulate responding fire service charging a failed sprinkler water system. A variety of instrumentation was used during the experiments, including thermocouples, bidirectional probes, optical density meters, heat flux transducers, directional flame thermometers, gas analyzers, a fire products collector, and residential smoke alarms. In addition, the experiments were documented with digital still photography, video cameras, and a thermal imaging camera. The experiments were conducted in the large burn room of the Bureau of Alcohol, Tobacco, Firearms and Explosives Fire Research Laboratory located in Beltsville, Maryland, USA. This report provides details on how each experiment was set up, how the experiments were conducted, and the instrumentation used to collect the data. A brief summary of the test results is also included. Detailed results and full data for each test are included in separate appendices.
Online Access
Free
Resource Link
Less detail

Determination of Char Rates for Glulam Columns Exposed to a Standard Fire for Three Hours

https://research.thinkwood.com/en/permalink/catalogue3238
Year of Publication
2021
Topic
Fire
Material
Glulam (Glue-Laminated Timber)
Application
Columns
Author
Hasburgh, Laura E.
Bourne, Keith
Barber, David
Organization
Forest Products Laboratory
ARUP
Year of Publication
2021
Format
Conference Paper
Material
Glulam (Glue-Laminated Timber)
Application
Columns
Topic
Fire
Keywords
Char Rates
Tall Wood
Fire Resistance
Conference
World Conference on Timber Engineering
Research Status
Complete
Summary
The fire resistance of a structural building member includes its ability to survive a specified fire without loss of its loadbearing function. For glue laminated timber columns, fire resistance is determined by either subjecting a structural member to a standard fire test or by using one of two accepted calculation methods. For wood structural members, the calculation methods rely on char rates obtained from numerous standard fire tests. The existing calculation methods are limited under United States building codes to calculating fire resistance ratings of 120 minutes or less. However, over the past decade there has been a push towards tall wood buildings and designers desire more exposed wood to be permitted in buildings. This desire, coupled with the recent adoption of code language that permits tall wood buildings up to 18 stories, has resulted in the need to determine char rates for glue laminated timber to use in the fire resistance calculations up to 180 minutes. Here we present the experimental method and initial char rate results of glue laminated columns exposed to the standard fire.
Online Access
Free
Resource Link
Less detail

Effect of Adhesives and Ply Configuration on the Fire Performance of Southern Pine Cross-Laminated Timber

https://research.thinkwood.com/en/permalink/catalogue1682
Year of Publication
2016
Topic
Connections
Fire
Material
CLT (Cross-Laminated Timber)
Author
Hasburgh, Laura
Bourne, Keith
Peralta, Perry
Mitchell, Phil
Schiff, Scott
Pang, Weichiang
Year of Publication
2016
Format
Conference Paper
Material
CLT (Cross-Laminated Timber)
Topic
Connections
Fire
Keywords
Southern Pine
Adhesives
Ply Configuration
Fire Performance
Melamine Formaldehyde
Phenol-Resorcinol Formaldehyde
Polyurethane
Emulsion Polymer Isocyanate
Delamination
Char Rate
Conference
World Conference on Timber Engineering
Research Status
Complete
Notes
August 22-25, 2016, Vienna, Austria p. 4031-4038
Summary
Thirteen Southern pine cross-laminated timber panels were tested in the intermediate scale horizontal furnace at the Forest Products Laboratory to determine the effects different adhesives and ply configuration had on fire performance. Four different adhesives were tested: melamine formaldehyde (MF), phenol resorcinol formaldehyde (PRF), polyurethane reactive (PUR), and emulsion polymer isocyanate (EPI). There were two ply configurations: Long-Cross-Long (LCL) or Long-Long-Cross (LLC) where “long” indicates the wood was parallel to the longer edge of the panel. The MF and the PRF prevented delamination and associated problems while the LLC configuration resulted in uneven charring patterns.
Online Access
Free
Resource Link
Less detail

Fire Behavior Of Next Generation Of Cross-Laminated Timber: CLT Manufactured With SCL And Hardwood

https://research.thinkwood.com/en/permalink/catalogue371
Year of Publication
2016
Topic
Fire
Material
CLT (Cross-Laminated Timber)
LVL (Laminated Veneer Lumber)
LSL (Laminated Strand Lumber)
Application
Wood Building Systems
Author
Dagenais, Christian
Grandmont, Jean-Frédéric
Hasburgh, Laura
Organization
FPInnovations
Year of Publication
2016
Format
Report
Material
CLT (Cross-Laminated Timber)
LVL (Laminated Veneer Lumber)
LSL (Laminated Strand Lumber)
Application
Wood Building Systems
Topic
Fire
Keywords
Aspen
Fire Behaviour
Charring Rate
ANSI/APA PRG-320
Manufacturing Parameters
Research Status
Complete
Summary
The objective of this study is to evaluate the fire behavior of CLT manufactured with different types of SCL or lumber boards, namely with laminated veneer lumber (LVL), laminated strand lumber (LSL) and Trembling Aspen. The fire test data is also compared to those of CLT manufactured in accordance with ANSI/APA PRG-320 using solid-sawn lumber grades. More specifically, the study aims at evaluating the charring rates of this new generation of CLT panels as well as the impact of their manufacturing parameters.
Online Access
Free
Resource Link
Less detail

Fire Performance of Mass-Timber Encapsulation Methods and the Effect of Encapsulation on Char Rate of Cross-Laminated Timber

https://research.thinkwood.com/en/permalink/catalogue758
Year of Publication
2016
Topic
Fire
Material
CLT (Cross-Laminated Timber)
Author
Hasburgh, Laura
Bourne, Keith
Dagenais, Christian
Ranger, Lindsay
Roy-Poirier, Audrey
Year of Publication
2016
Format
Conference Paper
Material
CLT (Cross-Laminated Timber)
Topic
Fire
Keywords
Charring Rate
Encapsulation
Fire Resistance
Conference
World Conference on Timber Engineering
Research Status
Complete
Notes
August 22-25, 2016, Vienna, Austria
Summary
Twenty-three (23) cross-laminated timber (CLT) panels were exposed to a standard fire at an intermediate scale. This paper discusses several encapsulation methods used to increase the fire resistance of those panels, with emphasis on encapsulation times and the impact of encapsulation on the charring rate of CLTs. The encapsulation methods used included Type X gypsum board, intumescent coating, rock fibre insulation and spray applied fire-resistant materials (SFRM). The results suggest that encapsulation methods can significantly reduce wood charring rates in addition to delaying the time at which wood elements become involved in fire.
Online Access
Free
Resource Link
Less detail

Full-Scale Fire Tests of a Two-Story Cross-Laminated Timber Structure

https://research.thinkwood.com/en/permalink/catalogue2068
Year of Publication
2018
Topic
Fire
Material
CLT (Cross-Laminated Timber)
Application
Wood Building Systems
Author
Hasburgh, Laura
Zelinka, Samuel
Bourne, Keith
Tucholski, David
Ouellette, Jason
Year of Publication
2018
Format
Conference Paper
Material
CLT (Cross-Laminated Timber)
Application
Wood Building Systems
Topic
Fire
Keywords
Full-Scale
Fire Tests
Fire Performance
Compartment Fire Test
Conference
World Conference on Timber Engineering
Research Status
Complete
Summary
There is a current trend towards mid- and high-rise mass timber buildings. With this trend, there is a research need to develop a comparison between mass timber compartment fires and non-combustible compartment fires. In an effort to address the knowledge gaps in the fire performance of cross-laminated timber compartments, a full-scale fire test series was developed. The fire test series included five tests with varying levels of exposed cross-laminated timber on a two story cross-laminated timber structure. Here we present a detailed summary of the fire test series, instrumentation plan, and an overview of the results.
Online Access
Free
Resource Link
Less detail

Full-Scale Fire Tests of a Two-Story Cross-Laminated Timber Structure

https://research.thinkwood.com/en/permalink/catalogue1826
Year of Publication
2018
Topic
Fire
Material
CLT (Cross-Laminated Timber)
Application
Wood Building Systems
Author
Hasburgh, Laura
Zelinka, Samuel
Bourne, Keith
Tucholski, David
Ouellette, Jason
Organization
Forest Products Laboratory
Year of Publication
2018
Format
Conference Paper
Material
CLT (Cross-Laminated Timber)
Application
Wood Building Systems
Topic
Fire
Keywords
Compartment Fire Test
Mass Timber
Full-Scale Fire Test
Conference
World Conference on Timber Engineering
Research Status
Complete
Notes
August 20-23, 2018, Seoul, Republic of Korea
Summary
There is a current trend towards mid- and high-rise mass timber buildings. With this trend, there is a research need to develop a comparison between mass timber compartment fires and non-combustible compartment fires. In an effort to address the knowledge gaps in the fire performance of cross-laminated timber compartments, a full-scale fire test series was developed. The fire test series included five tests with varying levels of exposed cross-laminated timber on a two story cross-laminated timber structure. Here we present a detailed summary of the fire test series, instrumentation plan, and an overview of the results.
Online Access
Free
Resource Link
Less detail

Improving durability of cross laminated timber (CLT) with borate treatment

https://research.thinkwood.com/en/permalink/catalogue3246
Year of Publication
2022
Topic
Serviceability
Material
CLT (Cross-Laminated Timber)
Author
Bagheri, Sajad
Alinejad, Mona
Ohno, Katie M.
Hasburgh, Laura E.
Arango, Rachel
Nejad, Mojgan
Organization
Forest Products Laboratory
Publisher
Springer
Year of Publication
2022
Format
Journal Article
Material
CLT (Cross-Laminated Timber)
Topic
Serviceability
Keywords
Borate
Durability
Flammability
Termite Resistance
Decay Resistance
Spray Treatment
Research Status
Complete
Series
Journal of Wood Science
Summary
Borate solution was used to treat two sets of Douglas-fr wood samples, one by spraying cross-laminated timbers (CLT) and another set by dip-treating wood in solutions at different retentions. A novel model was developed to explain and predict borate uptake based on dip-treatment parameters. Small-scale CLT samples were prepared using commercial emulsion polymer isocyanate (EPI) and polyurethane (PU) adhesive with dip-treated wood. The effect of adhesive and borate retention on CLT samples were evaluated through adhesion, fire, termite, and decay tests. The adhesion strength of wood was statistically unaffected by borate treatment. Statistical analysis showed that both spray- and dip-treated samples had significantly higher termite and decay resistance and fire performance than the untreated boards. Untreated CLT samples bonded with PU showed a considerably higher inherent decay and termite resistance than untreated specimens bonded with EPI adhesive.
Online Access
Free
Resource Link
Less detail

Overview of North American CLT fire testing and code adoption

https://research.thinkwood.com/en/permalink/catalogue3225
Year of Publication
2020
Topic
Fire
Material
CLT (Cross-Laminated Timber)
Author
Zelinka, Samuel L.
Hasburgh, Laura E.
Bourne, Keith J.
Organization
Forest Products Laboratory
Year of Publication
2020
Format
Journal Article
Material
CLT (Cross-Laminated Timber)
Topic
Fire
Keywords
Fire Resistance
Compartment Fire Testing
Standardization
Research Status
Complete
Series
Wood & Fire Safety
Summary
Cross laminated timber (CLT) is becoming more widely available in North America. However, it has not yet achieved widespread use in construction in the United States because provisions for CLT have only recently been added to model building codes. For example, CLT was recognized for the first time in the 2015 International Building Code (IBC), and the 2021 IBC will allow wood buildings made of CLT and other types of mass timber to be constructed up to 18 stories high. The changes to the 2021 IBC were implemented after several years of work from an ICC Ad-Hoc committee on tall wood buildings including fire testing supervised by the US Forest Service, Forest Products Laboratory. The fire tests involved five compartment fire test scenarios on a two-story building and specifically examined occupant egress and firefighter safety in corridors near the compartments. In addition to the fire tests performed by the Forest Products Laboratory, more large-scale fire tests were performed for the revision of the PRG-320 standard; the product standard for CLT in North America. These tests examined the heat resistance of adhesives used in CLT. This paper highlights the important changes to the IBC and the PRG-320 standard as well as summarizes the tests used to validate these changes.
Online Access
Free
Resource Link
Less detail

11 records – page 1 of 2.