In this study, five full-scale bolted glulam beam-to-beam connections with slotted-in steel plates were conducted under a third-point loading, and a three-dimensional finite element method based model was also established to investigate the failure modes and moment resistance of such connections. A material model based on the Continuum Damage Mechanics (CDM) theory was developed to predict damage evolution of wood. Different damage variables were used to consider the ductile and brittle failure modes of wood, respectively. The test results indicated that splitting and shear plug failures were the main failure modes. The numerical analysis model prediction achieved fair agreements with the test results. The research could provide the guide for the design of bolted beam-to-column connections in heavy timber structures.
This paper presents the results of an on-going program of the mechanical behaviour of bolted glulam beamto-column connections. The program included testing and modelling of connections of various bolt size, edge distance and lamina alignment patterns. This paper presents part of the obtained results, including monotonic and reversed cyclic loading test results of 10 full-scale beam-to-column connections and the corresponding modelling results. The test results indicated that the perpendicular-to-grain properties of glulam and the localized contact between the bolts and surrounding glulam had significant influence on the stiffness and the maximum moment of the connections. A finite element method based model, which can be easily incorporated in commercial available software packages, was developed and verified based on the test results. Good agreement was achieved. Parametric study results indicated that the tolerance of the bolt holes can significantly affect the mechanical behaviour of the bolted beam-to-column connections.