Skip header and navigation

10 records – page 1 of 1.

Comparative LCAs of Conventional and Mass Timber Buildings in Regions with Potential for Mass Timber Penetration

https://research.thinkwood.com/en/permalink/catalogue2885
Year of Publication
2021
Topic
Environmental Impact
Application
Wood Building Systems
Author
Puettmann, Maureen
Pierobon, Francesca
Ganguly, Indroneil
Gu, Hongmei
Chen, Cindy
Liang, Shaobo
Jones, Susan
Maples, Ian
Wishnie, Mark
Organization
University of Washington
Forest Products Laboratory
Portland State University
Editor
Borghi, Adriana Del
Publisher
MDPI
Year of Publication
2021
Format
Journal Article
Application
Wood Building Systems
Topic
Environmental Impact
Keywords
Mass Timber
Life-Cycle Assessment
Embodied Carbon
Embodied Energy
Research Status
Complete
Series
Sustainability
Summary
Manufacturing of building materials and construction of buildings make up 11% of the global greenhouse gas emission by sector. Mass timber construction has the potential to reduce greenhouse gas emissions by moving wood into buildings with designs that have traditionally been dominated by steel and concrete. The environmental impacts of mass timber buildings were compared against those of functionally equivalent conventional buildings. Three pairs of buildings were designed for the Pacific Northwest, Northeast and Southeast regions in the United States to conform to mass timber building types with 8, 12, or 18 stories. Conventional buildings constructed with concrete and steel were designed for comparisons with the mass timber buildings. Over all regions and building heights, the mass timber buildings exhibited a reduction in the embodied carbon varying between 22% and 50% compared to the concrete buildings. Embodied carbon per unit of area increased with building height as the quantity of concrete, metals, and other nonrenewable materials increased. Total embodied energy to produce, transport, and construct A1–A5 materials was higher in all mass timber buildings compared to equivalent concrete. Further research is needed to predict the long-term carbon emissions and carbon mitigation potential of mass timber buildings to conventional building materials.
Online Access
Free
Resource Link
Less detail

Comparative Life-Cycle Assessment of a High-Rise Mass Timber Building with an Equivalent Reinforced Concrete Alternative Using the Athena Impact Estimator for Buildings

https://research.thinkwood.com/en/permalink/catalogue2465
Year of Publication
2020
Topic
Environmental Impact
Material
CLT (Cross-Laminated Timber)
Application
Wood Building Systems

Comparative Life-cycle Assessment of a Mass Timber Building and Concrete Alternative

https://research.thinkwood.com/en/permalink/catalogue2429
Year of Publication
2020
Topic
Environmental Impact
Design and Systems
Material
CLT (Cross-Laminated Timber)
Application
Wood Building Systems

Environmental Life-Cycle Assessment and Life-Cycle Cost Analysis of a High-Rise Mass Timber Building: A Case Study in Pacific Northwestern United States

https://research.thinkwood.com/en/permalink/catalogue2838
Year of Publication
2021
Topic
Environmental Impact
Cost
Material
CLT (Cross-Laminated Timber)
Application
Wood Building Systems
Author
Liang, Shaobo
Gu, Hongmei
Bergman, Richard
Organization
USDA Forest Product Laboratory
Editor
Ganguly, Indroneil
Publisher
MDPI
Year of Publication
2021
Format
Journal Article
Material
CLT (Cross-Laminated Timber)
Application
Wood Building Systems
Topic
Environmental Impact
Cost
Keywords
LCA
Environmental Impact
Carbon Analysis
Research Status
Complete
Series
Sustainability
Summary
Global construction industry has a huge influence on world primary energy consumption, spending, and greenhouse gas (GHGs) emissions. To better understand these factors for mass timber construction, this work quantified the life cycle environmental and economic performances of a high-rise mass timber building in U.S. Pacific Northwest region through the use of life-cycle assessment (LCA) and life-cycle cost analysis (LCCA). Using the TRACI impact category method, the cradle-to-grave LCA results showed better environmental performances for the mass timber building relative to conventional concrete building, with 3153 kg CO2-eq per m2 floor area compared to 3203 CO2-eq per m2 floor area, respectively. Over 90% of GHGs emissions occur at the operational stage with a 60-year study period. The end-of-life recycling of mass timber could provide carbon offset of 364 kg CO2-eq per m2 floor that lowers the GHG emissions of the mass timber building to a total 12% lower GHGs emissions than concrete building. The LCCA results showed that mass timber building had total life cycle cost of $3976 per m2 floor area that was 9.6% higher than concrete building, driven mainly by upfront construction costs related to the mass timber material. Uncertainty analysis of mass timber product pricing provided a pathway for builders to make mass timber buildings cost competitive. The integration of LCA and LCCA on mass timber building study can contribute more information to the decision makers such as building developers and policymakers.
Online Access
Free
Resource Link
Less detail

Life Cycle Assessment and Environmental Building Declaration for "Design Building"

https://research.thinkwood.com/en/permalink/catalogue720
Topic
Environmental Impact
Material
CLT (Cross-Laminated Timber)
Application
Wood Building Systems
Author
O'Connor, Jennifer
Gu, Hongmei
Organization
Forest Products Laboratory
Format
Report
Material
CLT (Cross-Laminated Timber)
Application
Wood Building Systems
Topic
Environmental Impact
Keywords
Life-Cycle Assessment
Research Status
In Progress
Summary
EBD was first developed by the Athena Sustainable Materials Institute. An EBD is a summary report of the comprehensive environmental footprint data for a building and declares life-cycle impacts according to a standardized format. It is a statement of performance and is publicly disclosed, similar to a nutrition label on a food package. The intent of the document is to present results as transparently and concisely as possible. Athena’s EBDs are compliant with the European standard EN 15978, a whole-building LCA standard that is intended to support decision-making and documentation around the assessment of environmental performance of buildings. The Design Building would be the fourth building to be assessed as part of Athena’s EBD initiative and the first located in the United States.
Resource Link
Less detail

Life Cycle Assessment and Environmental Building Declaration for the Design Building at the University of Massachusetts

https://research.thinkwood.com/en/permalink/catalogue1836
Year of Publication
2018
Topic
Environmental Impact
Material
CLT (Cross-Laminated Timber)
Application
Wood Building Systems
Author
Gu, Hongmei
Bergman, Richard
Organization
Forest Products Laboratory
Publisher
United States Department of Agriculture
Year of Publication
2018
Format
Report
Material
CLT (Cross-Laminated Timber)
Application
Wood Building Systems
Topic
Environmental Impact
Keywords
Environmental Building Declaration
Life-Cycle Assessment
Green Building
Non-Residential
Leadership in Energy and Environmental Design (LEED)
Research Status
Complete
Summary
With the world’s increasing focus on sustainability in the construction sector through green building systems, the U.S. Department of Agriculture (USDA) has been actively engaged in green building advocacy in the United States through USDA Tall Wood Building competitions and follow-up research on use of mass timber for nonresidential buildings. The USDA Forest Service, Forest Product Laboratory (FPL) funded the study of environmental performance of the pioneer mass timber building (the John W. Olver Design Building) built at University of Massachusetts Amherst in 2016. The Athena Sustainable Materials Institute conducted the whole building life cycle assessment (LCA) using the Impact Estimator for Building software. Secondly, the reported LCA results led to development of an environmental building declaration (EBD) in conformance with European standard EN 15978. Environmental building declarations summarize the embodied and operational environmental impacts during the full building life cycle. An EBD is much like an environmental product declaration (EPD) which is intended for marketing and educational use, but instead of covering individual products like an EPD, an EBD covers the whole building. Lastly, the LCA results of the Design Building were then compared with a functionally equivalent steel and concrete building to acquire the whole building LCA credit in Leadership in Energy and Environmental Design (LEED) v.4 for green buildings. With the mass timber use in the Design Building, the building qualified for the whole building LCA credit in LEED v4. With this project, FPL is helping to standardize environmental performance reporting and advanced mass timber building sustainability.
Online Access
Free
Resource Link
Less detail

Life Cycle Assessment of Cross-Laminated Timber Transportation from Three Origin Points

https://research.thinkwood.com/en/permalink/catalogue2923
Year of Publication
2022
Topic
Environmental Impact
Material
CLT (Cross-Laminated Timber)
Author
Hemmati, Mahboobeh
Messadi, Tahar
Gu, Hongmei
Organization
University of Arkansas
USDA Forest Service Forest Products Laboratory
Editor
D’Acierno, Luca
Publisher
MDPI
Year of Publication
2022
Format
Journal Article
Material
CLT (Cross-Laminated Timber)
Topic
Environmental Impact
Keywords
Life-Cycle Assessment
Mass Timber
Global Warming Potential
Transportation
Research Status
Complete
Series
Sustainability
Summary
Cross-laminated timber (CLT) used in the U.S. is mainly imported from abroad. In the existing literature, however, there are data on domestic transportation, but little understanding exists about the environmental impacts from the CLT import. Most studies use travel distances to the site based on domestic supply origins. The new Adohi Hall building at the University of Arkansas campus, Fayetteville, AR, presents the opportunity to address the multimodal transportation with overseas origin, and to use real data gathered from transporters and manufacturers. The comparison targets the environmental impacts of CLT from an overseas transportation route (Austria-Fayetteville, AR) to two other local transportation lines. The global warming potential (GWP) impact, from various transportation systems, constitutes the assessment metric. The findings demonstrate that transportation by water results in the least greenhouse gas (GHG) emission compared with freight transportation by rail and road. Transportation by rail is the second most efficient, and by road the least environmentally efficient. On the other hand, the comparison of the life cycle assessment (LCA) tools, SimaPro (Ecoinvent database) and Tally (GaBi database), used in this research, indicate a remarkable difference in GWP characterization impact factors per tonne.km (tkm), primarily due to the different database used by each software.
Online Access
Free
Resource Link
Less detail

Life Cycle Assessment of Forest-Based Products: A Review

https://research.thinkwood.com/en/permalink/catalogue2175
Year of Publication
2019
Topic
Environmental Impact
Application
Wood Building Systems

Mass Timber Building Life Cycle Assessment Methodology for the U.S. Regional Case Studies

https://research.thinkwood.com/en/permalink/catalogue2887
Year of Publication
2021
Topic
Environmental Impact
Material
CLT (Cross-Laminated Timber)
Application
Wood Building Systems
Author
Gu, Hongmei
Liang, Shaobo
Pierobon, Francesca
Puettmann, Maureen
Ganguly, Indroneil
Chen, Cindy
Pasternack, Rachel
Wishnie, Mark
Jones, Susan
Maples, Ian
Organization
Forest Products Laboratory
University of Washington
Population Research Center
Editor
Jasinskas, Algirdas
Publisher
MDPI
Year of Publication
2021
Format
Journal Article
Material
CLT (Cross-Laminated Timber)
Application
Wood Building Systems
Topic
Environmental Impact
Keywords
Life-Cycle Assessment
Mass Timber
Whole-building LCA Methodology
Research Status
Complete
Series
Sustainability
Summary
The building industry currently consumes over a third of energy produced and emits 39% of greenhouse gases globally produced by human activities. The manufacturing of building materials and the construction of buildings make up 11% of those emissions within the sector. Whole-building life-cycle assessment is a holistic and scientific tool to assess multiple environmental impacts with internationally accepted inventory databases. A comparison of the building life-cycle assessment results would help to select materials and designs to reduce total environmental impacts at the early planning stage for architects and developers, and to revise the building code to improve environmental performance. The Nature Conservancy convened a group of researchers and policymakers from governments and non-profit organizations with expertise across wood product life-cycle assessment, forest carbon, and forest products market analysis to address emissions and energy consumption associated with mass timber building solutions. The study disclosed a series of detailed, comparative life-cycle assessments of pairs of buildings using both mass timber and conventional materials. The methodologies used in this study are clearly laid out in this paper for transparency and accountability. A plethora of data exists on the favorable environmental performance of wood as a building material and energy source, and many opportunities appear for research to improve on current practices.
Online Access
Free
Resource Link
Less detail

What Is the Impact of Mass Timber Utilization on Climate and Forests?

https://research.thinkwood.com/en/permalink/catalogue2921
Year of Publication
2022
Topic
Environmental Impact
Material
CLT (Cross-Laminated Timber)
Application
Wood Building Systems
Author
Pasternack, Rachel
Wishnie, Mark
Clarke, Caitlin
Wang, Yangyang
Belair, Ethan
Marshall, Steve
Gu, Hongmei
Nepal, Prakash
NDolezal, Franz
Lomax, Guy
Johnston, Craig
Felmer, Gabriel
Morales-Vera, Rodrigo
Puettmann, Maureen
Huevel, Robyn
Organization
USDA Forest Service Forest Products Laboratory
University of Exeter
Universidad de Chile
Universidad Católica del Maule
Editor
Ganguly, Indroneil
Publisher
MDPI
Year of Publication
2022
Format
Journal Article
Material
CLT (Cross-Laminated Timber)
Application
Wood Building Systems
Topic
Environmental Impact
Keywords
Life-Cycle Assessment
Climate Change
Embodied Carbon
Carbon Storage
Research Status
Complete
Series
Sustainability
Summary
As the need to address climate change grows more urgent, policymakers, businesses, and others are seeking innovative approaches to remove carbon dioxide emissions from the atmosphere and decarbonize hard-to-abate sectors. Forests can play a role in reducing atmospheric carbon. However, there is disagreement over whether forests are most effective in reducing carbon emissions when left alone versus managed for sustainable harvesting and wood product production. Cross-laminated timber is at the forefront of the mass timber movement, which is enabling designers, engineers, and other stakeholders to build taller wood buildings. Several recent studies have shown that substituting mass timber for steel and concrete in mid-rise buildings can reduce the emissions associated with manufacturing, transporting, and installing building materials by 13%-26.5%. However, the prospect of increased utilization of wood products as a climate solution also raises questions about the impact of increased demand for wood on forest carbon stocks, on forest condition, and on the provision of the many other critical social and environmental benefits that healthy forests can provide. A holistic assessment of the total climate impact of forest product demand across product substitution, carbon storage in materials, current and future forest carbon stock, and forest area and condition is challenging, but it is important to understand the impact of increased mass timber utilization on forests and climate, and therefore also on which safeguards might be necessary to ensure positive outcomes. To thus assess the potential impacts, both positive and negative, of greater mass timber utilization on forests ecosystems and emissions associated with the built environment, The Nature Conservancy (TNC) initiated a global mass timber impact assessment (GMTIA), a five-part, highly collaborative research program focused on understanding the potential benefits and risks of increased demand for mass timber products on forests and identifying appropriate safeguards to ensure positive outcomes.
Online Access
Free
Resource Link
Less detail

10 records – page 1 of 1.