Skip header and navigation

9 records – page 1 of 1.

The Experimental Study on Seismic Performance of Cross-Laminated-Timber Panel Construction

https://research.thinkwood.com/en/permalink/catalogue972
Year of Publication
2012
Topic
Seismic
Material
CLT (Cross-Laminated Timber)
Author
Suganumi, Naoto
Goto, Hiroshi
Yasumura, Motoi
Hamamoto, Takashi
Miyake, Tatsuya
Minoru, Okabe
Kaiko, Naoto
Nakagawa, Takafumi
Tsuda, Chihiro
Organization
Architectural Institute of Japan
Year of Publication
2012
Country of Publication
Japan
Format
Journal Article
Material
CLT (Cross-Laminated Timber)
Topic
Seismic
Keywords
Static Loading Test
Shaking Table Test
Language
Japanese
Research Status
Complete
Summary
The wood engineering community has dedicated a significant amount of effort over the last decades to establish a reliable predictive model for the load-carrying capacity of timber connections under wood failure mechanisms. Test results from various sources (Foschi and Longworth 1975; Johnsson 2003; Quenneville and Mohammad 2000; Stahl et al. 2004; Zarnani and Quenneville 2012a) demonstrate that for multi-fastener connections, failure of wood can be the dominant mode. In existing wood strength prediction models for parallel to grain failure in timber connections using dowel-type fasteners, different methods consider the minimum, maximum or the summation of the tensile and shear capacities of the failed wood block planes. This results in disagreements between the experimental values and the predictions. It is postulated that these methods are not appropriate since the stiffness in the wood blocks adjacent to the tensile and shear planes differs and this leads to uneven load distribution amongst the resisting planes (Johnsson 2004; Zarnani and Quenneville 2012a). The present study focuses on the nailed connections. A closed-form analytical method to determine the load-carrying capacity of wood under parallel-to-grain loading in small dowel-type connections in timber products is thus proposed. The proposed stiffness-based model has already been verified in brittle and mixed failure modes of timber rivet connections (Zarnani and Quenneville 2013b).
Online Access
Free
Resource Link
Less detail

Proposal of Design Method for Wood - Concrete Composite Beams Part 2 : Experimental Study on Creep Behavior

https://research.thinkwood.com/en/permalink/catalogue873
Year of Publication
2013
Topic
Design and Systems
Mechanical Properties
Material
Timber-Concrete Composite
Application
Beams
Author
Suzuki, Sota
Goto, Hiroshi
Inama, Masahiro
Ken, Kamike
Kitamura, Toshio
Yanagi, Sayaka
Organization
Architectural Institute of Japan
Year of Publication
2013
Country of Publication
Japan
Format
Journal Article
Material
Timber-Concrete Composite
Application
Beams
Topic
Design and Systems
Mechanical Properties
Keywords
Creep
Language
Japanese
Research Status
Complete
Summary
High strength, low weight, corrosion resistance, and electromagnetic neutrality make fiber-reinforced plastic (FRP) a suitable candidate in many structural applications, including rehabilitation and strengthening as well as the development of new wood members. Advanced forms of reinforced wood construction can enable contemporary wood structures to play an even greater role in today's construction."In this work, the writers establish a novel technique for reinforcing wood members involving external bonding of pretensioned FRP sheets on their tension zones. An analytical model for the maximum initial pretension is verified with tests on carbon/epoxy-prestressed wood beams. Additional studies, both analytical and experimental of the flexural behavior of wood beams reinforced with prestressed carbon/epoxy FRP sheets demonstrate the superior performance of the hybrid system and emphasize its favorable strength, stiffness, and ductility characteristics. Finally, a methodology is described for the selection of composite material dimensions and initial prestressing to maximize structural performance.
Online Access
Free
Resource Link
Less detail

Study on Seismic Performance of Building Construction with Cross Laminated Timber: Part 14: Deformation of Joints and Fracture Behavior on Three Story Full-Scale Static Load Test

https://research.thinkwood.com/en/permalink/catalogue981
Year of Publication
2013
Topic
Seismic
Connections
Material
CLT (Cross-Laminated Timber)
Application
Wood Building Systems
Author
Nasu, Hideyuki
Yahaura, Sota
Gosei, Murakami
Goto, Hiroshi
Hamamoto, Takashi
Miyake, Tatsuya
Yasumura, Motoi
Organization
Architectural Institute of Japan
Year of Publication
2013
Country of Publication
Japan
Format
Journal Article
Material
CLT (Cross-Laminated Timber)
Application
Wood Building Systems
Topic
Seismic
Connections
Keywords
Static Load Tests
Mid-Rise
Fracture Behavior
Full Scale
Seismic Performance
Language
Japanese
Research Status
Complete
Summary
This paper gives a bibliographical review of the finite element methods (FEMs) applied in the analysis of wood. The added bibliography at the end of this article contains 300 references to papers and conference proceedings on the subject that were published between 1995 and 2004. The following topics are included: Wood as a construction material—material and mechanical properties; wood joining and fastening; fracture mechanics problems; drying process, thermal properties; other topics. Wood products and structures—lumber; glulam, panels, wood composites; trusses and frames; floors, roofs; bridges; other products/structures.
Online Access
Free
Resource Link
Less detail

Study on Seismic Performance of Building Construction with Cross Laminated Timber: Part 16: Ex Post Fact Analysis for the Static Test of the Full Scale 3-Story Model

https://research.thinkwood.com/en/permalink/catalogue979
Year of Publication
2013
Topic
Seismic
Material
CLT (Cross-Laminated Timber)
Application
Wood Building Systems
Author
Matsumoto, Kazuyuki
Miyake, Tatsuya
Hamamoto, Takashi
Goto, Hiroshi
Kaiko, Naoto
Yasumura, Motoi
Organization
Architectural Institute of Japan
Year of Publication
2013
Country of Publication
Japan
Format
Journal Article
Material
CLT (Cross-Laminated Timber)
Application
Wood Building Systems
Topic
Seismic
Keywords
Static Loading Tests
Displacement
Full Scale
Language
Japanese
Research Status
Complete
Summary
Performance-Based Earthquake Engineering (PBEE) has been developed mainly for the region of high seismicity for the last three decades. Though abundant information on PBEE is available throughout the world, the application of this PBEE to the moderate-seismicity regions such as their maximum considered earthquake being less than magnitude 6.5 is not always straightforward because some portion of the PBEE may not be appropriate in these regions due to the environment different from the high-seismicity regions. This paper reviews the state-of-art in PBEE briefly. Then, the seismic hazard in moderate-seismicity regions including Korean Peninsula is introduced with its unique characteristics. With this seismic hazard, representative lowrise RC MRF structures and high-rise RC residential wall structures are evaluated by using PBEE approach. Also, the range of forces and deformations of the representative building structures in Korea is given. Based on these reviews, some ideas for the use of PBEE to improve the state-of-practice in moderate-seismicity regions are proposed.
Online Access
Free
Resource Link
Less detail

Study on Seismic Performance of Building Structure with Cross Laminated Timber: Part 12: Objective and Loading Procedure and Accuracy of Static Loading Test

https://research.thinkwood.com/en/permalink/catalogue983
Year of Publication
2013
Topic
Seismic
Material
CLT (Cross-Laminated Timber)
Application
Wood Building Systems
Author
Kaiko, Naoto
Hamamoto, Takashi
Gosei, Murakami
Yahaura, Sota
Miyake, Tatsuya
Goto, Hiroshi
Nakagawa, Takafumi
Yasumura, Motoi
Organization
Architectural Institute of Japan
Year of Publication
2013
Country of Publication
Japan
Format
Journal Article
Material
CLT (Cross-Laminated Timber)
Application
Wood Building Systems
Topic
Seismic
Keywords
Static Loading Test
Failure Behavior
Shear Force
Seismic Performance
Language
Japanese
Research Status
Complete
Summary
Cross-laminated timber (CLT) is a relatively new heavy timber construction material (also referred to as massive timber) that originated in central Europe and quickly spread to building applications around the world over the past two decades. Using dimension lumber (typically in the range of 1× or 2× sizes) glue laminated with each lamination layer oriented at 90° to the adjacent layer, CLT panels can be manufactured into virtually any size (with one dimension limited by the width of the press), precut and pregrooved into desirable shapes, and then shipped to the construction site for quick installation. Panelized CLT buildings are robust in resisting gravity load (compared to light-frame wood buildings) because CLT walls are effectively like solid wood pieces in load bearing. The design of CLT for gravity is relatively straightforward for residential and light commercial applications where there are plenty of wall lines in the floor plan. However, the behavior of panelized CLT systems under lateral load is not well understood especially when there is high seismic demand. Compared to light-frame wood shear walls, it is relatively difficult for panelized CLT shear walls to achieve similar levels of lateral deflection without paying special attention to design details, i.e., connections. A design lacking ductility or energy dissipating mechanism will result in high acceleration amplifications and excessive global overturning demands for multistory buildings, and even more so for tall wood buildings. Although a number of studies have been conducted on CLT shear walls and building assemblies since the 1990s, the wood design community’s understanding of the seismic behavior of panelized CLT systems is still in the learning phase, hence the impetus for this article and the tall CLT building workshop, which will be introduced herein. For example, there has been a recent trend in engineering to improve resiliency, which seeks to design a building system such that it can be restored to normal functionality sooner after an earthquake than previously possible, i.e., it is a resilient system. While various resilient lateral system concepts have been explored for concrete and steel construction, this concept has not yet been realized for multistory CLT systems. This forum article presents a review of past research developments on CLT as a lateral force-resisting system, the current trend toward design and construction of tall buildings with CLT worldwide, and attempts to summarize the societal needs and challenges in developing resilient CLT construction in regions of high seismicity in the United States.
Online Access
Free
Resource Link
Less detail

Study on Seismic Performance of Building Structure with Cross Laminated Timber: Part 13: Relative Story Displacement of Full Scale 3-Story Model -Comparisons with Shaking Table Test

https://research.thinkwood.com/en/permalink/catalogue982
Year of Publication
2013
Topic
Seismic
Material
CLT (Cross-Laminated Timber)
Application
Wood Building Systems
Author
Yahaura, Sota
Goto, Hiroshi
Hamamoto, Takashi
Gosei, Murakami
Miyake, Tatsuya
Matsumoto, Kazuyuki
Kaiko, Naoto
Organization
Architectural Institute of Japan
Year of Publication
2013
Country of Publication
Japan
Format
Journal Article
Material
CLT (Cross-Laminated Timber)
Application
Wood Building Systems
Topic
Seismic
Keywords
Static Load Tests
Shaking Table Test
Shear Force
Seismic Performance
Language
Japanese
Research Status
Complete
Summary
The material presented in this paper refers to a part of the investigation on cross-laminated (XLam) wall panel systems subjected to seismic excitation, carried out within the bilateral project realized by the Institute of Earthquake Engineering and Engineering Seismology (IZIIS) and the Faculty of Civil and Geodetic Engineering at the University of Ljubljana (UL FCGE). The full program of the research consista of basic tests of small XLam wooden blocks and quasi-static tests of anchors, then quasi-static tests of full-scale wall panels with given anchors, shaking-table tests of two types of XLam systems including ambient-vibration tests, and finally analytical research for the definition of the computational model for the analysis of these structural systems. In this paper, the full-scale shaking-table tests for one XLam system type (i.e. specimen 1 consisting of two single-unit massive wooden XLam panels) that have been performed in the IZIIS laboratory are discussed. The principal objectives of the shaking-table tests have been to get an insight into the behavior of the investigated XLam panel systems under seismic excitations, develop a physical and practical computational model for simutalion of the dynamic response based on the tests, and finally correlate the results with those from the previously performed quasi-static tests on the same wooden panel types. The obtained experimental results have been verified using a proposed computational model that included new contitutive relationships for anchors and contact zones between panels and foundations. Because a reasonable agreement between the numerical and experimental results has been achieved, the proposed computational model is expected to provide a solid basis for future research on the practical design of these relatively new materials and systems.
Online Access
Free
Resource Link
Less detail

Study on Seismic Performance of Building Structure with Cross Laminated Timber: Part 20: Intensity and Performance of Joint

https://research.thinkwood.com/en/permalink/catalogue975
Year of Publication
2013
Topic
Seismic
Connections
Material
CLT (Cross-Laminated Timber)
Author
Suzuki, Kei
Goto, Takahiro
Shimizu, Yosuke
Yasumura, Motoi
Kaiko, Naoto
Miyake, Tatsuya
Hamamoto, Takashi
Goto, Hiroshi
Organization
Architectural Institute of Japan
Year of Publication
2013
Country of Publication
Japan
Format
Journal Article
Material
CLT (Cross-Laminated Timber)
Topic
Seismic
Connections
Keywords
joint
Seismic Performance
Language
Japanese
Research Status
Complete
Summary
In this paper, the behaviour of cross-lam (CLT) wall systems under cyclic loads is examined. Experimental investigations of single walls and adjacent wall panels (coupled walls) in terms of cyclic behaviour under lateral loading carried out ìn Italy at IVALSA Trees and Timber Institute and in Canada at FPInnovations are presented. Different classifications of the global behaviour of CLT wall systems are introduced. Typical failure mechanisms are discussed and provisions for a proper CLT wall seismic design are given. The influences of different types of global behaviour on mechanical properties and energy dissipation of the CLT wall systems are critically discussed. The outcomes of this experimental study provides better understanding of the seismic behaviour and energy dissipation capacities of CLT wall systems.
Online Access
Free
Resource Link
Less detail

Tensile Performance of CLT Screw Joint with Steel Plate

https://research.thinkwood.com/en/permalink/catalogue1010
Year of Publication
2014
Topic
Connections
Mechanical Properties
Material
CLT (Cross-Laminated Timber)
Author
Nakajima, Shoichi
Araki, Yasuhiro
Goto, Hiroshi
Nakajima, Shiro
Yamaguchi, Yoshinobu
Yasumura, Motoi
Organization
Architectural Institute of Japan
Year of Publication
2014
Country of Publication
Japan
Format
Journal Article
Material
CLT (Cross-Laminated Timber)
Topic
Connections
Mechanical Properties
Keywords
Screws
Joints
Steel Plate
Tensile Performance
Laminar Boundary
Cyclic Loading
Language
Japanese
Research Status
Complete
Summary
The wood engineering community has dedicated a significant amount of effort over the last decades to establish a reliable predictive model for the load-carrying capacity of timber connections under wood failure mechanisms. Test results from various sources (Foschi and Longworth 1975; Johnsson 2003; Quenneville and Mohammad 2000; Stahl et al. 2004; Zarnani and Quenneville 2012a) demonstrate that for multi-fastener connections, failure of wood can be the dominant mode. In existing wood strength prediction models for parallel to grain failure in timber connections using dowel-type fasteners, different methods consider the minimum, maximum or the summation of the tensile and shear capacities of the failed wood block planes. This results in disagreements between the experimental values and the predictions. It is postulated that these methods are not appropriate since the stiffness in the wood blocks adjacent to the tensile and shear planes differs and this leads to uneven load distribution amongst the resisting planes (Johnsson 2004; Zarnani and Quenneville 2012a). The present study focuses on the nailed connections. A closed-form analytical method to determine the load-carrying capacity of wood under parallel-to-grain loading in small dowel-type connections in timber products is thus proposed. The proposed stiffness-based model has already been verified in brittle and mixed failure modes of timber rivet connections (Zarnani and Quenneville 2013b).
Online Access
Free
Resource Link
Less detail

Tensile Performance of Steel Plate-Attached Plate Wood Screw Joint Using Cross-Laminated Timber

https://research.thinkwood.com/en/permalink/catalogue1800
Year of Publication
2016
Topic
Mechanical Properties
Material
CLT (Cross-Laminated Timber)
Author
Nakajima, Shoichi
Araki, Yasuhiro
Nakajima, Shiro
Goto, Hiroshi
Publisher
J-STAGE
Year of Publication
2016
Country of Publication
Japan
Format
Conference Paper
Material
CLT (Cross-Laminated Timber)
Topic
Mechanical Properties
Keywords
Joints
Tensile Performance
Steel Plate
Screw Connectors
Shear
Language
Japanese
Conference
Japan Earthquake Engineering Association Annual Conference
Research Status
Complete
ISSN
1884-6246
Online Access
Free
Resource Link
Less detail

9 records – page 1 of 1.