Process parameters of cross-laminated timber (CLT) fabricated with Japanese larch were evaluated. The process parameters were designed by using an orthogonal test including pressure, glue consumption, and adhesive. Both delamination and block shear tests were conducted on CLT in accordance with GB/T 26899 (2011). The results showed that the optimum process parameters were A2B3C2 including pressure (1.2 MPa), glue consumption (200g/m2), and amount of sdhesive (one-component plyurethane). The weight loss and moisture absoption increased when the temperature increased, but the block shear strength decreased as the temperature was raised from 20C to 230C.
As the population continues to grow in China’s urban settings, the building sector contributes to increasing levels of greenhouse gas (GHG) emissions. Concrete and steel are the two most common construction materials used in China and account for 60% of the carbon emissions among all building components. Mass timber is recognized as an alternative building material to concrete and steel, characterized by better environmental performance and unique structural features. Nonetheless, research associated with mass timber buildings is still lacking in China. Quantifying the emission mitigation potentials of using mass timber in new buildings can help accelerate associated policy development and provide valuable references for developing more sustainable constructions in China. This study used a life cycle assessment (LCA) approach to compare the environmental impacts of a baseline concrete building and a functionally equivalent timber building that uses cross-laminated timber as the primary material. A cradle-to-gate LCA model was developed based on onsite interviews and surveys collected in China, existing publications, and geography-specific life cycle inventory data. The results show that the timber building achieved a 25% reduction in global warming potential compared to its concrete counterpart. The environmental performance of timber buildings can be further improved through local sourcing, enhanced logistics, and manufacturing optimizations.
The compressive strength in the major direction of cross-laminated timber CLT is the key to supporting the building load when CLT is used as load-bearing walls in high-rise wood structures. This study mainly aims to present a model for predicting the average compressive strength of CLT and promoting the utilization of CLT made out of planted larch. The densities and compressive strengths of lamina specimens and CLT samples with widths of 89 and 178 mm were evaluated, and their relationship was analyzed to build a prediction model by using Monte Carlo simulation. The results reveal that the average density of the lamina and CLT were about equal, whereas the average compressive strength of the CLT was just about 72% of that of the lamina. Width exerted no significant effect on the average compressive strength of the CLT, but homogenization caused the wider CLT to have a smaller variation than that of the lamina. The average compressive strength of the lamina could be calculated by using the average density of lamina multiply by 103.10, and the average compressive strength of the CLT could be calculated according to the compression strength of lamina in major and minor direction, therefore, a new prediction model is determined to predict the average compression strength of CLT by using the average density of lamina or CLT, the average compression strength of CLT made in this study is about 74.23 times of the average density of the lamina. The results presented in this study can be used to predict the average compressive strength of CLT by using the average density of lamina and provide a fundamental basis for supporting the utilization of CLT as load-bearing walls.